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Abstract

We study a dynamic competition model, in which retail firms periodically compete on
promotional effort, sales price, and service level over a finite planning horizon. The key
feature of our model is that the current decisions influence the future market sizes through
the service effect and the network effect, i.e., the firm with a higher current service level and a
higher current demand is more likely to have larger future market sizes and vice versa. Hence,
the competing firms face the tradeoff between generating current profits and inducing future
demands (i.e., the exploitation-induction tradeoff). Using the linear separability approach,
we characterize the pure strategy Markov perfect equilibrium in both the simultaneous
competition and the promotion-first competition. The exploitation-induction tradeoff has
several important managerial implications under both competitions. First, to balance the
exploitation-induction tradeoff, the competing firms should increase promotional efforts,
offer price discounts, and improve service levels under the service effect and the network
effect. Second, the exploitation-induction tradeoff is more intensive at an earlier stage of
the sales season than at later stages, so the equilibrium sales prices are increasing, whereas
the equilibrium promotional efforts and service levels are decreasing, over the planning
horizon. Third, the competing firms need to balance the exploitation-induction tradeoff
inter-temporally under the simultaneous competition, whereas they need to balance this
tradeoff both inter-temporally and intra-temporally under the promotion-first competition.
Finally, we show that, in the dynamic game with market size dynamics, the exploitation-
induction tradeoff could be a new driving force for the “fat-cat” effect (i.e., the equilibrium
promotional efforts are higher under the promotion-first competition than those under the
simultaneous competition).
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1 Introduction

In today’s competitive and unstable market environment, it is prevalent that modern firms
compete not only on generating current profits, but also on winning future market shares (see,
e.g., Klemperer, 1995). The current decisions of all competing firms in the market not only
determine their respective current profits, but also significantly influence their future demands.
We refer to such inter-temporal dependence of future demands on the current decisions as market
size dynamics. Under market size dynamics, myopically optimizing the current profit may lead
to significant loss of future demands, and hurt the firm’s profit in the long run. Therefore, the
competing firms face an important tradeoff between generating current profits and inducing
future demands, which we refer to as the exploitation-induction tradeoff.

Among others, we focus on two main drivers of the aforementioned exploitation-induction
tradeoff: (a) The future demand is positively correlated with the current service level, which we
refer to as the service effect; and (b) the future demand is positively correlated with the current
demand, which we refer to as the network effect.

The service effect is driven by the well-recognized phenomenon that the past service expe-
rience of a customer significantly impacts his/her future purchasing decisions (see, e.g., Bolfon
ef “all, P0O0A; Afaki and Popescu, 20014). A poor service (e.g., a low fill rate of a customer’s
orders) generally diminishes the goodwill of a customer, thus leading to lower future orders
from this customer (Adelman and Mersereau, 2013). Moreover, it is widely observed in practice
that stockouts can adversely impact future demands (see, e.g., Anderson_ef all, 2006; Ganr_and
ParK, 2007). In the face of a stockout experience, a natural reaction of a customer is to order
fewer items and/or switch the seller in a subsequent purchasing execution (see, e.g., Fifzsimons,
pO00; Olsen and Parker, 2008). Therefore, good [poor]| past services of a firm are likely to induce
high [low] demands in the future.

The network effect, also known as network externalities, refers to the general phenomenon
that a customer’s utility of purchasing a product is increasing in the number of other customers
buying the same product (see, e.g., Economided, [996). Under the network effect, a higher
current demand of a firm leads to more adoptions of its product, thus increasing the utility
of purchasing its product for future customers and boosting future demands. There are three
major mechanisms that give rise to the network effect: (a) the direct effect, under which an
increase in the adoption of a product leads to a direct increase in the value of this product for
other users (see, e.g., Katz and Shapird, T985); (b) the indirect effect, under which an increase
in the adoption of a product enhances the value of its complementary products or services,
which in turn increases the value of the original product (see, e.g., Cabral, 2011); and (c) the
social effect, under which the value of a product is influenced by the social interactions of its
customers with their peers (see, e.g., Bloch and Quérou, 2UT3).

In the highly inter-correlated and competitive market of the current era, the service effect

and the network effect reinforce each other. This is because the fast development of information
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technology enables customers to easily learn the information (on, e.g., quality, service, popu-
larity, etc.) of any product through communications with their friends and/or the customer
reviews on online reviewing platforms and social media. Thus, the higher the current demand
of a firm, the more information about its service quality will be released to the public, and,
hence, the higher impact its service quality will have upon future demands. Moreover, the
current service level of a firm impacts the future demands of itself as well as its competitors,
because customers are likely to patronage the firms with good past service and abandon those
with poor past service based on either their own purchasing experience or the social learning
process.

The primary goal of this paper is to develop a model that can provide insights on how
the exploitation-induction tradeoff impacts the equilibrium market behavior under both the
service effect and network effect. To this end, we study a periodic-review dynamic competition
model, in which firms in a retail market compete under a Markov game over a finite planning
horizon. The random demand of each firm in each period is determined by its market size and
the current sales prices and promotional efforts of all competing firms. The promotional effort
(e.g., advertising, product innovation, and/or after sales service) of a firm boosts the current
demand of itself and diminishes that of its competitors. The key feature of our model is that
the market sizes of the competing firms are stochastically evolving throughout the planning
horizon, and their evolutions are driven by the service effect and the network effect. More
specifically, to capture the market size dynamics, we assume that the future market size of
each firm is stochastically increasing in its current service level and demand, and stochastically
decreasing in the current service levels of its competitors. Taking the market size dynamics
into consideration, each firm chooses its promotional effort, sales price, and inventory stocking
quantity in each decision period, with an attempt to balance generating current profits and
inducing future demands in the dynamic and competitive market. We study two competitions:
(a) the simultaneous competition, under which the firms simultaneously make their promotion,
price, and inventory decisions in each period; and (b) the promotion-first competition, under
which the firms first make their promotional efforts and, after observing the promotion decisions
in the market, choose their sales prices and inventory levels in each period.

Conducting a dynamic game analysis, we make two main contributions in this paper: (a)
We study a dynamic competition model with the inter-temporal influences of current decisions
over future demands, and characterize the pure strategy Markov perfect equilibrium under
both the simultaneous competition and the promotion-first competition; (b) we identify several
important managerial implications of the exploitation-induction tradeoff upon the equilibrium
market behavior of the dynamic competition under the service effect and the network effect.

We use the Markov perfect equilibrium paradigm to analyze our dynamic competition model,
because the competing firms need to adaptively adjust their strategies based on their inven-

tory levels and market sizes in each period. The analytical characterization of Markov perfect
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equilibria in a dynamic oligopoly with planning horizon length greater than two is, in general,
prohibitively difficult (see, e.g., Olsen and Parked, 2014). To characterize the equilibrium market
outcome in our model, we employ the linear separability approach (see, e.g., Olsen_and Parker,
2008) and show that, under both the simultaneous competition and the promotion-first compe-
tition, the equilibrium profit of each firm in each period is linearly separable in its own inventory
level and market size. Such linear separability greatly facilitates the analysis and enables us to
characterize the pure strategy Markov perfect equilibrium under both competitions. Moreover,
under both competitions, the pure strategy Markov perfect equilibrium has the nice feature that
the equilibrium strategy of each firm only depends on the private information (i.e., inventory
level and market size) of itself, but not on that of its competitors. Under the simultaneous com-
petition, the subgame played by the competing firms in each period can be decomposed into a
two-stage competition, in which the firms compete jointly on promotional effort and sales price
in the first stage, and on service level in the second. Under the promotion-first competition, the
subgame in each period can be decomposed into a three-stage competition, in which the firms
compete on promotional effort in the first stage, on sales price in the second, and on service
level in the third. Under both competitions, each stage of the subgame in each period has a
pure strategy Nash equilibrium, thus ensuring the existence of a pure strategy Markov perfect
equilibrium in the Markov game. We also provide mild sufficient conditions under which the
Markov perfect equilibrium is unique under each competition.

Under both the simultaneous and the promotion-first competitions, the market size dynam-
ics significantly impact the equilibrium behaviors of the competing firms via the exploitation-
induction tradeoff. This tradeoff is quantified by the linear coefficient of market size for each
firm in each period. The higher the market size coefficient, the more intensive the exploitation-
induction tradeoff for the respective firm in the previous period. We identify three effective
strategies under the service effect and the network effect: (a) improving promotional efforts,
(b) offering price discounts, and (c) elevating service levels. These strategies are grounded on
the uniform idea that, to balance the exploitation-induction tradeoff, the competing firms can
induce higher future demands at the cost of reduced current margins. Our analysis demon-
strates how the strength of the service effect and network effect impacts the equilibrium market
outcome. Under stronger service and network effects, the exploitation-induction tradeoff is
more intensive, so the competing firms make more promotional efforts, offer heavier price dis-
counts, and maintain higher service levels. When the market is stationary, the intensity of the
exploitation-induction tradeoff decreases over the sales season under both competitions. Hence,
the equilibrium sales prices are increasing, whereas the equilibrium promotional efforts and
service levels are decreasing, over the planning horizon.

Our analysis reveals two interesting differences between the simultaneous competition and
the promotion-first competition under market size dynamics. First, under the simultaneous

competition, the competing firms need to balance the exploitation-induction tradeoff inter-
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temporally, whereas, under the promotion-first competition, they have to balance this tradeoff
both inter-temporally and intra-temporally. Second, we identify a new driving force for the “fat-
cat” effect (i.e., in each period, the equilibrium promotional efforts may be higher under the
promotion-first competition than those under the simultaneous competition): The exploitation-
induction tradeoff is more intensive in the promotion-first competition than in the simultaneous
competition, thus prompting the firms to make more promotional efforts under the promotion-
first competition.

The rest of this paper is organized as follows. We position this paper in the related literature
in Section B. Section B introduces the model setup. We analyze the simultaneous competition
model in Section B, and the promotion-first competition model in Section B. We compare the
equilibrium outcomes in these two competitions in Section B. Section @ concludes this paper.

All proofs are relegated to the Appendix.

2 Literature Review

Our work is related to several streams of research in the literature. The literature on the phe-
nomenon that the current service level impacts future demands is rich. For example, Schwart4
(1966, 1970) first studies the inventory management model, in which future demands are ad-
versely affected by current poor service levels. Adelman and Merserean (2013) consider the
dynamic capacity allocation problem of a supplier, whose customers remember past service.
Aflaki and Popescu (20014) propose a dynamic behavioral model to study the retention and
service relationship management with the effect of past service experiences on future service
quality expectations. The impact of current service on future demands has also been analyzed
in a competitive environment. Hall'and Porteud (2000) investigate a dynamic customer service
competition, in which the duopoly firms compete by investing in capacity with a fixed total
number of customers. [Linef-all (2007) study a dynamic inventory duopoly model, in which
inventory is perishable and customers may defect to a competitor. Olsen_and Parkex (2008)
generalize this model to the setting with non-perishable inventory and the setting in which
the firms may attract dissatisfied customers from the competition. Gand (2002) investigates
the supplier competition model, in which each customer switches among suppliers based on her
past service quality experience. Gaur and Park (2007) study an inventory competition, in which
each customer learns about a firm’s service level from her previous shopping experience, and
makes her potential patronage decision among different firms accordingly. The contribution of
our paper to this literature is that we characterize the equilibrium market behavior in the joint
promotional effort, sales price, and service level competition under the service effect.

The optimal pricing strategy under network externalities has received considerable attention
in the economics and marketing literature. [Dhebar and Orenl (T986) characterize the optimal
nonlinear pricing strategy for a network product with heterogenous customers. Xie and Sirbu

(I995) examine the equilibrium dynamic pricing strategies of an incumbent and a later entrant
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under network externalities. Bensaid and Lesnd (I996) consider the optimal dynamic monopoly
pricing under network externalities and show that the equilibrium prices increase as time passes.
Bloch and Quérou (2013) study the optimal pricing strategy in a network with a given network
structure and characterize the relationship between optimal prices and consumers’ centrality.
We contribute to this stream of literature by analyzing the impact of network externalities upon
the competing firms’ operations decisions (i.e., the inventory policies) in a dynamic competition.

Our paper is also related to the extensive literature on dynamic pricing and inventory
management. This literature diverges into two lines of research: (i) the monopoly model,
in which a single firm maximizes its total expected profit over a finite or infinite planning
horizon, and (ii) the competition model, in which multiple firms play a noncooperative game
to maximize their respective expected per-period profits over an infinite planning horizon. The
literature on the monopoly model of joint pricing and inventory management is very rich.
Federgruen and Heching (999) give a general treatment of this problem and show the optimality
of the base-stock list-price policy. Chen and Simchi-Levi (20044,H, 2006) study the joint pricing
and inventory management problem with fixed ordering costs for the finite horizon, infinite
horizon, and continuous review models. Chen ef all (2006) characterize the optimal policy in
the joint pricing and inventory control model with fixed ordering costs and lost sales. Huh and
Janakiramanl (2008) identify a general condition under which (s, S)-type policies are optimal for
a stationary joint pricing and inventory control model with fixed ordering costs. [Li and Zheng
(2006) study the joint pricing and inventory management problem with the random yield risk,
and show that such risk drives the firm to charge a higher price in each period. The joint pricing
and inventory control problem with periodic review and positive leadtime is extremely difficult.
For this problem, Pang et all (2012) and Chen_ef"all (2014) characterize the monotonicity
properties of the optimal price and inventory policy for nonperishable and perishable products,
respectively. We refer interested readers to Chen and Simchi-Levi (2012) for a comprehensive
review on the monopoly models of joint pricing and inventory management.

The research on the competition model of dynamic pricing and inventory management is
also abundant. Under deterministic demands, Bernstein and Federgruen (2003) study the EOQ
model of a two-echelon distribution system, characterize the equilibrium pricing and replenish-
ment strategies of the competing retailers under both Bertrand and Cournot competitions, and
identify the perfect coordination mechanisms therein. Bernstein and Federgruen (20014a) address
infinite-horizon models for oligopolies with competing retailers under price-sensitive uncertain
demand. Bernstein and Federgruen (2004H) develop a stochastic general equilibrium inventory
model, in which retailers compete on both sales price and service level throughout an infinite
horizon. Bernstein and Federgruen (2007) generalize this model to a decentralized supply chain
setting, and characterize the perfect coordinating mechanisms under price and service compe-
tition. Our work differs from this line of literature in that we study the exploitation-induction

tradeoff with the service effect and the network effect in a dynamic and competitive market.
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To this end, we adopt the Markov perfect equilibrium (i.e., the closed-loop equilibrium) in a
finite-horizon model as opposed to the commonly used stationary strategy equilibrium (i.e., the
open-loop equilibrium) in an infinite-horizon model.

Finally, from the methodological perspective, our work is related to the literature on the
analysis of Markov perfect equilibrium in dynamic competition models. Markov perfect equi-
librium is prevalent in the economics literature on dynamic oligopoly models (see, e.g., Maskin
and Tirold, TYRY; Ericson and Paked, 1995; Curfafi, [996). In the operations management lit-
erature, this equilibrium concept has been widely adopted to study the equilibrium behaviors
in dynamic games. Employing the linear separability approach, Hallland Porfend (2000); [Liu
ef_all (2007); Olsen and Parker (2008) characterize the Markov perfect equilibrium in dynamic
duopoly models with market size dynamics, and Ahn_and Olsen (2007) analyze the structure of
the pure strategy Markov perfect equilibria in a dynamic inventory competition with subscrip-
tions. A similar approach based on the separability of player decisions and probability transition
functions has been used by Albright and Winston (I979) to study a joint pricing and advertis-
ing competition, and by Nagarajan and Rajagopalan (2009) to study a multi-period inventory
competition. Due to limited technical tractability, the analysis of Markov perfect equilibrium in
nonlinear and nonseparable dynamic games is scarce. Martinez-de-AThéniz_and Talluri (2011)
characterize the Markov perfect equilibrium price strategy in a finite-horizon dynamic Bertrand
competition with fixed capacities. [ and Larivierd (2012) numerically compute the Markov
perfect equilibrium in an infinite-horizon model, in which a supplier allocates its limited capac-
ity to competing retailers. Olsen_and Parkex (20014) give conditions under which the stationary
infinite-horizon equilibrium is also a Markov perfect equilibrium in the context of inventory
duopolies. Our paper adopts the linear separability approach to characterize the pure strategy
Markov perfect equilibrium of a dynamic joint promotion, price, and inventory competition
under both the service effect and the network effect, and analyze the exploitation-induction

tradeoff therein.

3 Model

Consider an industry with IV competing retail firms, which serve the market with partially sub-
stitutable products over a T'—period planning horizon, labeled backwards as {T,7 —1,--- ,1}.
In each period ¢, each firm i selects a promotional effort ~;; € [0, 7%; ], which represents the
effort the firm makes in advertising, product innovation, and/or after-sales service to promote
the demand of its product in the current period. We assume that, in any period ¢, the total
promotional investment cost of each firm ¢ is proportional to its realized demand in period ¢,
D; 4, and given by v; ¢(7i¢)D;+. The per-unit demand cost rate, v;(-), is a non-negative, con-
vexly increasing, and twice continuously differentiable function of the promotional effort ~;,

with 7;4(0) = 0. Before the demand is realized in period ¢, each firm ¢ selects a sales price
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Dit € [Bi, » Di+] and adjusts its inventory level to z; ;. We assume that the excess demand of each
firm is fully backlogged. In summary, each firm ¢ makes three decisions at the beginning of any
period ¢: (i) the promotional effort +;, (ii) the sales price p; ¢, and (iii) the inventory level x; ;.

The demand of each firm ¢ in any period t depends on the entire vector of promotional
efforts v+ := (714,724, -+ ,yn,t) and the entire vector of sales prices p := (p1.t, p2,t, -+ ,PNt) I
period t. We denote the demand of firm ¢ as D; (¢, pt). More specifically, we base our analysis

on the following multiplicative form of D;4(-,-):

D+ (ve,pt) = Nigdi 1 (e, D)t (1)

where A;; > 0 is the market size of firm 4 in period ¢, d; (¢, pt) > 0 captures the impact of ¢
and p; on firm 4’s demand in period ¢, and & ; is a positive continuous random variable with a
connected support. Let Fj;(-) be the c.d.f. and th() be the c.c.d.f. of & ;. The market size
A is observable by firm i at the beginning of period ¢ through the pre-order sign-ups and/or
subscriptions before the release of its product in period ¢. The random perturbation term &; ;
is independent of the market size vector Ay := (A1, Aoy, -+ ,Any), the sales price vector py,
and the promotional effort vector 7;. Moreover, {§;+ : t = T,T —1,--- ,1} are independently
distributed for each i. Without loss of generality, we normalize E[¢; ;] = 1 for each i and any
t, i.e., E[D;+(ye,pt)] = Niedit(ve,pe). Therefore, d; (v, pt) can be viewed as the normalized
expected demand of firm ¢ in period ¢.

We assume that d;¢(-,-) is twice continuously differentiable on [0,7%; ] % [0,72,] X -+ x
[0, 7n,¢] X [Blﬂf’ﬁl’t] X [QZt,ﬁQ,t] X e X [BN,t’ﬁN=t]’ and satisfies the following monotonicity prop-

erties:

3dz’,t(%a Pt)
8’7@',15

adi,t (%7 Pt)
a%’,t

8di,t (’Yt, Pt)

dit (Ve .
and Odia(n, p1) >0, forall j #i. (2)
api,t

> 0,
apj,t

<0, <0,

In other words, an increase in a firm’s promotional effort increases the current-period demand
of itself, and decreases the demands of its competitors. On the other hand, an increase in a
firm’s sales price decreases the demand of itself, and increases the demands of its competitors.
Moreover, we assume that d; ¢(-,-) is log-separable, i.e., d; ¢ (¢, pt) = Vi t(Ve)pit(pe), where 1 4(-)

and p; +(-) are positive and twice-continuously differentiable. Inequalities (2) imply that

Vi + (1) 0Vi + () <0 Opit(pt) < 0. and Opi(pt)
a%‘,t a’Yj,t ’ api,t ’ 8pj,t

> 0, > 0, for all j # 1.

For technical tractability, we assume that 1; ;(-) and p; ¢(-) satisfy the log increasing differences

and the diagonal dominance conditions for each ¢ and any ¢, i.e.,

9% log Vi (1) “0 9% log Vi +(1)
2 b
My 07,075

& logia(n) Za logi(),

> 0 for all j # 4, and
| 8 Z‘Qt a’tha’V]t

3)

9% log pi+(pr) <0 9% log p; 1 (pt)

0? log pi +(pt) 9? log p; +(pt)
op? " Opop; oo, Z W
pz7t plvt p]vt

>0 for all j # ¢, and
| a Zzt 8p7, tap]t
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The log increasing differences and the diagonal dominance assumptions are not restrictive, and
can be satisfied by a large set of commonly used demand models in the economics and operations
management literature, such as the linear, logit, Cobb-Douglas, and CES demand functions (see,
e.g., Milgrom and Roberts, T990; Bernstein and Federgruen, 2004a,H).

The expected fill rate of firm 4 in period ¢, z; 4, is given by

E[x:_t A Di (e, pt)] E[(Audi (v pe)yie) T A (N (e, 0e)Eit)]

e, = = =E(y A&iy),
o E[Dit (e, pe)] Aiidit (e, pt) (Yie A &it)
where y;p = #{%p:&) and a A b := min{a,b} for any a,b € R. Thus, z; is concavely

increasing in y; ; for all y; ; > 0. Moreover, z;; = 0 if y;; <0, and z;; 11, if y; 4 — +o00.

The key feature of our model is that current promotion, pricing, and inventory decisions
impact upon future demands via the service effect and the network effect. To model these two
effects, we assume that the market size of each firm in the next period is given by the following

functional form:

Nig—1 = mig(z, Dig, Moy, Big) = NipS, + cig(2) DigE3, (5)

where Z!, is a positive random variable representing the market size changes driven by exoge-
b

nous factors such as economic environment. Let p;; := E[Z},] > 0. The term «;¢(2:)D; =2,
summarizes the service effect and the network effect. Specifically, a;+(-) > 0 is a continuously
differentiable function with

O 1(2t)

7> >0, and
8Zj7t

<0, for all j # 1,

and =2, is a nonnegative random variable with E[=?,] = 1. =2, captures the random perturba-

tions in the market size changes driven by the service effect and the network effect. We refer to
{ait(-) 11 <i <N, T >t >1} as the market size evolution functions. Moreover, for technical

tractability, we assume that «;(-) is additively separable, i.e.,

aii(2t) = Kiie(2it) — Z Kijt(Z5t)s
J#i
where k;;¢(-) > 0 is concave, increasing and continuously differentiable in z;;, and x;¢(-) > 0 is
continuously increasing in z; ¢ for all j # ¢. Since a;¢(-) > 0 for all z;, £4;+(0) —Z#i kij+(1) > 0.
Let ne (-, -+, +) == (1eCy ey 0),m2e (55 )s - s mne(es -, -, -)) denote the market size vector in the
next period.

The evolution of the market sizes, (H), has several important implications. First, the future
market size of each firm depends on its current market size in a Markovian fashion. Thus,
the dynamic competition model in this paper falls into the regime of Markov games. Second,
although the service level of each firm does not influence the current demand of any firm due to
the unobservability of the firms’ inventory information to customers, it will impact the firms’

future demands. This phenomenon is driven by the service effect. The higher the service level of
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a firm, the better service experience the customers have with this firm in the current period, and
the more customers will patronage this firm in the future. Analogously, if the service levels of
a firm’s competitors increase, customers will be more likely to purchase from its competitors in
the future. Therefore, the future demand of each firm is stochastically increasing in the current
service level of this firm and stochastically decreasing in the current service level of any of its
competitors. Hence, the inventory decision of each firm has the demand-inducing value driven
by the service effect. Third, the future demand of each firm is positively correlated with the
current demand of this firm. This phenomenon is driven by the network effect. If the realized
current demand of a firm is higher, potential customers can get higher utilities if purchasing from
this firm, thus giving rise to higher future demand. Because of the network effect, the sales price
and promotional effort not only affect the current demand, but also influence future demands.
Fourth, the service effect and the network effect reinforce each other. More specifically, the
impact of current service levels upon future market sizes is higher with higher realized current
demands. With the explosive growth of online social media, customers could easily learn the
service qualities of all firms through social learning. As a consequence, higher current demands
lead to more intensive social interactions among customers, and, hence, magnify the impact of
current service levels on future demands.
We introduce the following model primitives:
d; = discount factor of firm 7 for revenues and costs in future periods, 0 < §; < 1,
wj + = per-unit wholesales price paid by firm 7 in period ¢,
b; + = per-unit backlogging cost paid by firm ¢ in period ¢,
hit = per-unit holding cost paid by firm 7 in period t.
Without loss of generality, we assume the following inequalities hold for each i and ¢:
bi ¢ > w; — 0;w;—1 :the backlogging penalty is higher than the saving from delaying an order
to the next period for each firm in any period, so that no firm will backlog
all of its demand,
hit > 0;w; 1—1 — w; ¢ :the holding cost is sufficiently high so that no firm will place a speculative
order.
Dit > 0jwi¢—1 + biy + Vi +(7i+) :positive margin for backlogged demand with highest price and promotional
effort.

We define the normalized expected holding and backlogging cost function for firm ¢ in period ¢:
Li,t(yi,t) = E{hi,t(yi,t - fz‘,t)Jr + bi,t(yi,t — &,t)_}, where y;; € R. (6)
The state of the Markov game is given by:

I; = (lig, 12y, -+, INt) = the vector for the starting inventories of all firms in period ¢,

Ay = (Mg, Aoy, -+, Any) = the vector for the market sizes of all firms in period t.

10
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We use S := RN x Rf to denote the state space of each firm ¢ in the dynamic competition.

To characterize how the market size dynamics (i.e., the service effect and the network effect)
impact the equilibrium market outcome, we consider the Markov perfect equilibrium (MPE)
in our dynamic competition model. An MPE satisfies two conditions: (a) in each period ¢,
each firm ¢’s promotion, price, and inventory strategy depends on the history of the game
only through the current period state variables (I, A;), and (b) in each period ¢, the strategy
profile generates a Nash equilibrium in the associated proper subgame. In other words, MPE
is a closed-loop equilibrium that satisfies subgame perfection in each period. Because of its
simplicity and consistency with rationality, MPE is widely used in dynamic competition models
in the economics (e.g., Maskin_and Tirold, T988) and operations management (e.g., Olsen and
Parked, 2008) literature.

A major technical challenge to characterize the MPE in a dynamic inventory competition
model is that when the starting inventories are higher than the equilibrium order-up-to levels,
the model becomes illy behaved and analytically intractable (see, e.g., Olsen"and Parkex, 2014).
This issue is worsened under endogenous pricing decisions (see, e.g., Bernstein and Federgruen,
2007). To overcome this technical challenge, we make the following assumption throughout our

analysis.

ASSUMPTION 1 At the beginning of each period ¢, each firm i is allowed to sell (potentially

part of) its onhand inventory to its supplier at the current-period per-unit wholesale price wj ;.

Assumption 0 is imposed to circumvent the aforementioned technical challenge. As will
be clear by our subsequent analysis, with this assumption, the equilibrium profit of each firm
i in each period t is linearly separable in its starting inventory level I; ; and market size A;;.
Assumption M enables us to eliminate the influence of current inventory decision of any firm upon
the future equilibrium behavior of the market, so as to single out and highlight the exploitation-
induction tradeoff with the service effect and the network effect. Assumption 0 applies when the
retail firms have such great market power that they can reach an agreement with their respective
suppliers on the return policy with full price refund. Bernstein and Federgruen (2007), among
others, also make this assumption to characterize the MPE in an infinite-horizon joint price and
service level competition model. With Assumption 0, we can define the action space of each

firm i in each period t: A;(Li¢) := [0,%i4] X [p, ,, Pit] x [min{0, I; 1}, +00).

4 Simultaneous Competition

In this section, we study the simultaneous competition (SC) model where each firm i simultane-
ously chooses a combined promotion, price, and inventory strategy in any period ¢. This model
applies to the scenarios where the market expanding efforts (e.g., advertising, trade-in programs,
etc.) take effect instantaneously, so, in essence, the promotional effort and sales price decisions

are made simultaneously in each period. Our analysis in this section focuses on characteriz-

11



Yang and Zhang: Dynamic Competition under Market Size Dynamics 12

ing the pure strategy MPE and providing insights on the impact of the exploitation-induction
tradeoff in the SC model.

4.1 Equilibrium Analysis

In this subsection, we show that the simultaneous competition model has a pure strategy MPE.
Moreover, we characterize a sufficient condition on the per-unit demand cost rate of promotional
effort, v;4(-), under which the MPE is unique. Without loss of generality, we assume that, at
the end of the planning horizon, each firm 7 salvages all the on-hand inventory and fulfills all
the backlogged demand at unit wholesale price w; o > 0. The payoff function of each firm i is

given by:

T
E{Z 8] [piaDit(ve, o) — wig(@ip — Lix) — hig(@ig — Dig(y,00)) " = bie (@i — Die(ve.pe)) ™
=1

~Vit (Vi) Dit (e, pe)] + 6] wioLi o I, Ar}, (7)
s.t. Iiv—1 = xit — Dj (v, pt) for each t,
and Nip—1 = Ai,thl,t + al-’t(zt)Di,t(%,pt)E%t for each t.
Under an MPE, each firm ¢ should try to maximize its expected payoff in each subgame (i.e., in

each period t) conditioned on the realized inventory levels and market sizes in period ¢, (Iy, A¢):

t
E{Z 5§_T[pi,TDi,T(7T7pT) - wi,’r(-xi,T - Iz',T) - hi,’r(xi,’r - Di,T(7TapT))+ - bi,T(xi7T - Di,T(’YT?])T))i

=1
Vi e (Vi) Dir (Vr, p7)] + SjwioLio) I, A}, (8)
s.t. Iir—1=xir — Dj+(Vr,pr) foreach 7, t > 7 > 1,
and Nirq= Ai,TE%’T + ai,T(zT)DZ-,T(fyT,pT)E?J for each 7, t > 7> 1.
A (pure) Markov strategy profile in the SC model 0% := {075(-,") : 1 <i < N, T >¢ > 1}
prescribes each firm ¢’s combined promotion, price, and inventory strategy in each period t,
where o75(-, ) :== (v{(+, ), pi5 (s ), 275(-, ) is a Borel measurable mapping from S to A;¢(; ).
We use 07¢ := {074(-,-) : 1 < i < N,T >t > 1} to denote the pure strategy profile in the
induced subgame in period ¢, which prescribes each firm i’s (pure) strategy from period ¢ till
the end of the planning horizon.
To evaluate the expected payoff of each firm ¢ in each period ¢ for any given Markov strategy
profile ¢%¢ in the simultaneous competition, let
Vit(It, At|oi€) = the total expected discounted profit of firm ¢ in periods ¢t,¢ —1,---, 1,0, when starting
period t with the state variable (I;, A;) and the firms play strategy of¢ in periods
tt—1,---,1.
Thus, by backward induction, V; (-, -|o{¢) satisfies the following recursive scheme for each firm

i in each period t:

Vit (I, Ag|oi€) = Jie (Vi (g, Ae), 05 (g, Ag), 25 (Lg, M), Ity Agloi€ ),

12
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where (-, 1) = (%) %3305 )s -+ YA, () is the period ¢ promotional effort vector pre-
scribed by o°¢, pie(-,-) = (pi%(, ), P35 (-5 ), -+ ,pf\?,t(-, -)) is the period ¢ sales price vector pre-
scribed by o°¢, x7(+, 1) = (21%(+, ), 25%(+, ), -+ ,xf\‘f,t(-, -)) is the period ¢ post-delivery inventory
vector prescrlbed by o*¢

Jit (e, s T, Ity At|0f€ 1) = E{piaDie(ve,pt) — win(wix — Lit) — hig(zie — Dig(ve,pt)) "
—bit(xie — Dit(ve,06)) — Vit (Vi,t) Die (e, Dt)
+0iVit—1(xe — De(ve, pe), 1t (26, Di(ves pe)s My Ee) |05 1) [ L, Ae }9)

and Vjo(Iy, At) = wiol;p. We now formally define the pure strategy MPE in the SC model.

DEFINITION 1 A (pure) Markov strategy o°* = {(v/{"(,), pi7 (), 2i7 () + 1 <@ <
N, T >t > 1} is a pure strategy MPE in the SC model if and only if, for each firm 4, each
period ¢, and each state variable (I3, A¢),

(Vi (It M), pi (I, M), 255 (I, At))

:argma‘x(’}’i,t:pi,t7xi,t)€Ai,t(Ii,t){Jivt([’yiyt’ V2T T M), [Pie, P25 4 (s M), [0, 2254 (I, M), i, Agloi€h) }
(10)

By Definition 0, a (pure) Markov strategy profile in the SC model is a pure strategy MPE if
it satisfies subgame perfection in each period t. Definition [ does not guarantee the existence of
an MPE, %, in the SC model. In Theorem [, below, we will show a pure strategy MPE always
exists in the SC model. Moreover, under a mild additional assumption on v;(-), the SC model
has a unique pure strategy MPE. By Definition [, the equilibrium strategy for firm ¢ in period

t (e G ) pie (), 2397 (4, ), may depend on the state vector of its competitors (1 ¢, A—it).
In practice, however, each firm ¢’s starting inventory level I; ; and market size A;; are generally
its private information that is not accessible by its competitors in the market. We will show
that the equilibrium strategy profile of each firm ¢ in each period ¢ is only contingent on its
own realized state variables (I; ¢, A;;), but independent of its competitors’ private information
(I—it,A—it). The following theorem characterizes the existence and the uniqueness of MPE in
the SC model.

THEOREM 1 The following statements hold for the SC model:

(a) There exists a pure strategy MPE o = {(47¢"(-, ), pi¢" (-, ), {5 () : 1 <i < N, T >
t>1).

(b) For each pure strategy MPE, 0%*, there exists a series of vectors {{¢ : T' >t > 1}, where

7= (819 85% ]s\ft) with 3§ > 0 for each i and ¢, such that
Vit(Ie, A|of ) = wi iy + Bi i, for each firm i and each period t. (11)

(c) If the following two conditions simultaneously hold for each i and ¢:

13
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(i) I/Z’t() <1 for all ;¢ € [0,%;4]; and

(i) v (i) (Pie — Owig—1 — via(Yia) + €ip) + Wi (via)]? 2 v (via) for all pis € [p, . Pis]
and i € [0, 53], where

iy v=max{(Gwiz—1 — wie)yir — Lit(yir) : yir > 0},

ScC*

0®* is the unique MPE in the SC model. In particular, if v;+(7;+) = i+, conditions (i)

and (ii) are satisfied.

Theorem M(a) demonstrates the existence of a pure strategy MPE in the simultaneous com-
petition model. Moreover, in Theorem 0(b), we show that, for each pure strategy MPE o5, the
corresponding profit function of each firm ¢ in each period ¢ is linearly separable in its starting
inventory level I;; and market size A;;. We refer to the constant f‘; as the SC market size
coefficient of firm 4 in period t. As we will show later, the SC market size coefficient measures
the intensity of the exploitation-induction tradeoff. The larger the §;%, the more intensive the
exploitation-induction tradeoff for firm ¢ in the previous period ¢+ 1. Theorem M(b) also implies
that the equilibrium profit of each firm ¢ in each period ¢t only depends on the state variables
of itself (I; ¢, Aj;), but not on those of its competitors (/_;;, A_;;). Theorem M(c) characterizes
a sufficient condition for the uniqueness of an MPE in the SC model. In particular, if the pro-
motional effort v; ¢ refers to the actual monetary payment of promotional investment per-unit
demand for each firm 7 in each period ¢ (i.e., v;(7vit) = 7t for each i and t), there exists a
unique MPE in the SC model. For the rest of this paper, we assume that conditions (i) and (ii)
are satisfied for each ¢ and ¢ and, hence, the SC model has a unique pure strategy MPE o°¢*.

The linear separability of Vj (-, -|of*) (i.e., Theorem (b)) enables us to characterize the
MPE in the SC model. Plugging (I) into the objective function of firm ¢ in period ¢, by

i = Niodit(Ye, pe)yie and zip = By, A&ir), we have:

Jit (Ve Dt Tty Ity Al 07y) =BApi e Dit (v, pe) — wi(wie — Lie) — hin(wie — Die(ve,pe)) ™
= bit(zit — Dit(ve;p¢))” — Vit (Vi) Dit(Ve5 pt)
+ 5in‘,t—1(f/Ut - Dt(%,])t)a ﬂt(zm Dt(%:ypt), A, Et)|o'fi*1)|lt7 At}
:E{pi,t/\i,tdi,t(’}%pt)éi,t - wz‘,t(yi,tAz‘,tdz‘,t(’Yupt) - Iz‘,t)
— g (it Ni g it (v, 0¢) — Niedip (e, pe) i) ©
— it (Y Ni e it (ve, pr) — Nt (e, Pe)Eie) ™
— Vit (Yit) Ni e it (e, pe) it + Siwip—1(Yia N et (v, Pe) — Nindi (v, Pe) i)
+ 5152‘{?_1(/\@@% + Oéi,t(zt)Ai,tdi,t(’Ytapt)gi,th%t)uta A}

=witlit + Nig{0iB5 5 1t + Vit (V) pit(Pe) [Pit — Oiwi—1 — vie(Vie) + 75 (o)},
(12)

14
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where m5(y) = (Swig—1 — wit)yir — Lie(Win) + i85 1 (Riie Blyfy A &ia]) = ki Elyfy A&ial)),
J#i
and 375 = 0 for each i.

We observe from ([2) that the payoff function of each firm 7 in the subgame of period ¢ has a
nested structure. Hence, the subgame of period ¢ can be decomposed into two stages, where
the firms compete jointly on promotion and price in the first stage, and on inventory in the
second stage. Since the service level of each firm ¢, as measured by the expected fill rate z; ¢, is
increasing in the inventory decision y; ;, we refer to the second-stage competition as the service
level competition hereafter. By backward induction, we first study the second-stage service level
competition. Let G; “? be the N —player noncooperative game that represents the second-stage
service level competition in period ¢, where player ¢ has payoff function wsi() and feasible action

set R. The following proposition characterizes the Nash equilibrium of the game G 2,

PROPOSITION 1  For each period t, the second-stage service level competition gfc’z has a

] SC*

unique pure strategy Nash equilibrium yi*. Moreover, for each i, y;¢* > 0 is the unique solution

to the following equation:

(Giwig—1 — wie) = Liy (Wid") + 0B 1 Fia(wif ki s (B(yi" A &ie)) = 0. (13)

Proposition I demonstrates the existence and uniqueness of a pure strategy Nash equilibrium

*

of the second-stage service level competition. Moreover, y;i* can be obtained by solving the

first-order condition 0y, , w7 (y;*") = 0. Let mj® := (n{{, w53, -+, m}7}) be the equilibrium
payoff vector of the second-stage service level competition in period ¢, where 7{" = ; t(yfc*).

For each i and ¢, let

I35 (ves o) = Yie(ve) pie (pe) Pie — Oiwie—1 — vig(vie) + 771 ]- (14)

sc,1

We define an N —player noncooperative game G, '~ to represent the first-stage joint promotion

and price competition in period ¢, where player i has payoff function Hfi( -) and feasible action

sc,1

set [0,7i,t) x [p. . Dit]. We characterize the Nash equilibrium of the game G, in the following

proposition.
PROPOSITION 2  For each period t, following statements hold:

a) The first-stage joint promotion and price competition, Qsc’l, s a log-supermodular game.
¢

SC*

(b) The game gfc’l has a unique pure strateqy Nash equilibrium (y;

SC*

, "), which is the unique

serially undominated strategy of G; 1,

15
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(¢) The Nash equilibrium of Qtsc’l is the unique solution to the following system of equations:

,

8 w ( sc*) / ( sc*) S 07 Zf ,YZS’? - 0’

o Oy Wit (M Vit\Vig

For each 1, Yt T4 - — = f A SCH o and,

UG By — G — i) Ty | T & Y €00
>0 i = i
.
Oy pia 1) <0 i =,
. Op; Pit\Py 1
or each 1 : + = if pSC* D

/ T pit(PP) PiS = dwip—1 — vie(Vi§) + i 0. Py € By Pit),

>0 ifpiS = P

(15)

d) Let II3¢* := (11§, TI5<F, - - -\ II5S%) be the equilibrium payoff vector of the first-stage joint
t 1,62 Nt
promotion and price competition in period t, where 1[}{" = Hfﬁ(vﬁc*,pfc*). We have

135" > 0 for all .

Proposition 2 shows that the first-stage joint promotion and price competition G; “lis a
log-supermodular game, and has a unique pure strategy Nash equilibrium (47, pf*). The

unique Nash equilibrium, (¢

,p;*), is determined by (i) the serial elimination of strictly
dominated strategies, or (ii) the system of first-order conditions (3). Under equilibrium, by
Proposition B(d) and the objective function of period ¢, ([2), each firm ¢ earns a positive
normalized expected total discounted profit, A;¢(6;8;¢_ ¢ + II55°), in the subgame of period
t. Summarizing Theorem 0, Proposition 0 and Proposition B, we have the following theorem

that sharpens the characterization of the MPE in the SC model.
THEOREM 2 For each period ¢, the following statements hold:
(a) For each i, 87§ = ;8¢ _qpir + 1T
(b) Under the unique (pure strategy) MPE o°¢*, the policy of firm i is given by

(Vi (e, Me), P35 (I, Ne), 235 (T, Av)) = (i 03 Mg pi (0P )i (7). (16)

Theorem B(a) recursively computes the SC market size coefficient vectors {3 : T > ¢ > 1}.
Theorem B(b) demonstrates that, under the MPE o°¢*, each firm 4’s joint promotion, price, and
inventory policy in each period t only depends on its own state variables (/; ;, A; ), but not on
those of its competitors (I_;+, A_;), which are not accessible to firm ¢ in general. Thus, for
each firm ¢ in each period ¢, its equilibrium strategy has the attractive feature that the strategy
depends on its accessible information only.

In some of our analysis below, we will consider a special case of the SC model, where the
market is symmetric, i.e., all competing firms have identical characteristics. We use the subscript

“s” to denote the case of symmetric market. In this case, for all ¢, j, and ¢, let pg+(-) := pis(-),

T/Js,t(‘) = %,t('), Vs,t(‘) = Vi,t('), as,t(‘) = Oéz‘,t(‘), /isa,t(‘) = Kii,t(')a Rsb,t(') = ﬂij,t(')v Ws,t 1=

16
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Wity Pst = iy, bsy = iy, pss = piy, and 65 := ;. Thus, let Ly (-) := Li(-) for each 4.
As shown in Theorem [, there exists a unique pure strategy MPE in the symmetric SC model,

*

which we denote as 07°*. The following proposition is a corollary of Theorems I-.

PRrROPOSITION 3  The following statements hold for the symmetric SC model:

(a) For eacht=T,T —1,---,1, there exists a constant 335 > 0, such that
Vit(Ly, Mi|o5G) = wsilig + BegNie, for alli.

sc,2

(b) In each period t, the second-stage service level competition g is symmetric, with the

payoff function for each firm i given by

55 (e) = (Oswsi—1=ws)yin— Lt (Uit) + 05855 1 (Roat (BlYHAELD) =D mapa(Blyf AEj])-
J#i

Moreover, gjcf has a unique pure strategy Nash equilibrium which is symmetric, so we

SC* sc,2

use Y35 [r3% ] to denote the equilibrium strategy [payoff] of each firm in GS;”.

(c) In each period t, the first-stage joint promotion and price competition Q;ﬁ;l 18 symmetric,

with the payoff function for each firm i given by

IS (e pt) = Vst (V) ps,t(Pe)[Pig — Osws i1 — Vs (Vi) + 7og |-

Moreover, gjct’ has a unique pure strategy Nash equilibrium (v5sh, pasy) which is symmetric
y scx  __ scx SCx ScCx SC* Sckx  __ SC* SC* SC*
(Z'e Vsst = (75t’75t7" 775t)for some g ¢ andpss,t (pst7pst7 ’ >pst)f0r some

SC*

pst

d) Under the unique pure strateqy MPE, o3¢, the policy of firm i in period t is
S
(Vg (Les Me), 077 (T Ae), 235 (Te, At)) = (Vo s Pat s NVt Pst (Do) Vst(Ves))s for each (Ip, Ay).

Proposition B characterizes the MPE, 3*, and the market size coefficients, {57 : T >t >
1}, in the symmetric SC model. Proposition B shows that, in the symmetric SC model, all
competing firms set the same promotional effort, sales price, and service level in each period

under equilibrium, whereas the equilibrium market outcome may vary in different periods.

4.2 Exploitation-Induction Tradeoff

In this subsection, we study how the market size dynamics (i.e., the service effect and the
network effect) influence the equilibrium market outcome in the SC model. We focus on the
managerial implications of the exploitation-induction tradeoff in a dynamic and competitive
market.

To begin with, we characterize the impact of the market size coefficient vectors {8;¢ : T' >
t > 1} upon the equilibrium market outcome. The following theorem serves as the building

block of our subsequent analysis of the exploitation-induction tradeoff in the SC model.

17
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THEOREM 3 For each period ¢, the following statements hold:

(a) For each i and j # 4, y;¢" is continuously increasing in 8;{_; and independent of 375 _;.

(b) For each i and j # 4, 7f¢* is continuously increasing in 8¢ ; and continuously decreasing
b b

3 sc
mn j,t— 1

SC*

(c) If the SC model is symmetric, 757" is continuously increasing in 3"

s,t

SC*

whereas p75 is
)

Sc*

continuously decreasing in 735".
)

(d) If the SC model is symmetric and () and ps(-) satisfy the following monotonicity

condition

al Opst(pt)
api,t

N
) 0031 0) 0, for all 4y, and

< 0, for all py, 17
— 3%’,t bt ( )

=1

SC*

sc . : N
5 is continuously increasing in 75"

SCx SCx

(e) If the SC model is symmetric and 755" is increasing in 555_1, 755 is continuously increasing

in 8541, whereas pi7 is continuously decreasing in 355 _;.

SCx
s,t

(f) In the symmetric SC model, if the monotonicity condition (IC7) holds and 755" is increasing

. ase sc - . . e
in 8551, B34 is continuously increasing in 535 .

Theorem B shows that the market size coeflicients {Bfi :1<i< N, T >t>1} quantify
the intensity of the exploitation-induction tradeoff in the SC model. More specifically, if ﬂii_l
is larger, firm ¢ faces stronger exploitation-induction tradeoff in period ¢. Therefore, to balance
this strengthened tradeoff and to induce high future demands, each firm should improve service
quality, decrease sales price, and increase promotional effort, as shown in parts (a) and (e) of
Theorem B. Moreover, Theorem B(f) characterizes the relationship between the exploitation-
induction tradeoffs in different periods, demonstrating that if the exploitation-induction tradeoff
is more intensive in the next period, it is also stronger in the current period under a mild
condition. The monotonicity condition (I4) implies that a uniform increase of all N firms’
promotional efforts leads to an increase in the demand of each firm, and a uniform price increase
by all N firms gives rise to a decrease in the demand of each firm. This condition is commonly
used in the literature (see, e.g., Bernstein and Federgruer, 20040; Allon and Federgruen, 2007),
and often referred to as the “dominant diagonal” condition for linear demand models. The
assumption that 7% is increasing in 37%_; is not restrictive either. In Lemma B in the Appendix,
we give some sufficient conditions for this assumption. More specifically, Lemma B implies that

SCx*
7Ts,t

Is increasing in 575 _; if one of the following conditions holds: (i) The adverse effect of a
firm’s competitors’ service upon its future market size is not strong; (ii) the network effect is
sufficiently strong; or (iii) both the service effect and the network effect are sufficiently strong.

Now we consider a benchmark case without the service effect and the network effect. We use

“~” to denote this model. Thus, in the benchmark model, the market size evolution function

18
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&;¢(-) = 0 for each firm ¢ and each period ¢t. Without the service effect and the network effect,

the current promotion, price, and service level decisions of any firm will not influence the future

demands. Therefore, the competing firms can focus on generating current profits in each period

without considering inducing future demands, i.e., the exploitation-induction tradeoff is absent

in this benchmark case. To characterize the impact of the service effect and the network effect

upon the equilibrium outcome, the followmg theorem compares the Nash equilibria in G} 2 and
tS “2 and the Nash equilibria in Qt and g“ L

THEOREM 4 (a) For each firm i and each period t , Yieh = Uit Z¢ = Y, and

SC* > 7TSC*
t .

(b) Consider the symmetric SC model. For each period ¢, the following statements hold:

(1) 755 > 455 and, thus, v7¢"(It, Ar) > 37§ (It, A) for all 4 and all (I, A¢).
(ii) p35 < ﬁgct* and, thus, p;§* (I, Ar) < pi (11, A¢) for all i and all (I, Ay).

(iif) If the monotonicity condition () holds, we have 75" (I, Ar) > 75" (I, Ay) for all i
and all (I, Ay).

Theorem @ highlights the impact of market size dynamics upon the equilibrium market
outcome. Specifically, Theorem H(a) shows that, under the service effect and the network effect,
each firm 4 should set a higher service level in each period ¢. In the symmetric SC model,
Theorem B(b-i) shows that each firm should increase its promotional effort in each period under
the service effect and the network effect, in order to induce higher future demands. Analogously,
Theorem H(b-ii) shows that the service effect and the network effect give rise to lower equilibrium
sales price of each firm in each period. Under the monotonicity condition (C4), Theorem H(b-
i,ii) implies that the equilibrium expected demand of each firm in each period is higher under
the service effect and the network effect. As a consequence, to match supply with the current
demand and to induce future demands with the service effect, each firm should increase its base
stock level in each period under the service effect and the network effect, as shown in Theorem
A(b-iii).

Theorem @ identifies effective strategies for firms to balance the exploitation-induction trade-
off under both the service effect and the network effect. In this case, the competing firms have to
tradeoff generating current profits and inducing future demands. To balance the exploitation-
induction trade-off, the firms can employ three strategies to exploit the service effect and the
network effect: (a) elevating service levels, (b) offering price discounts, and (c) improving pro-
motional efforts. Elevating service levels does not lead to a higher current demand, but helps the
firm induce higher future demands via the service effect. Offering price discounts and improving
promotional efforts do not increase the current profits but give rise to higher current demands
and, thus, induce higher future demands via the network effect. In a nutshell, the uniform idea

of all three strategies is that, to balance the exploitation-induction tradeoff under the service
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effect and the network effect, the competing firms should induce higher future demands at the
cost of reduced current margins.

To deliver sharper insights on the managerial implications of the exploitation-induction
tradeoff, we confine ourselves to the symmetric SC model for the rest of this section. The
following theorem characterizes how the intensities of the service effect and the network effect

influence the equilibrium market outcome in the symmetric SC model.

THEOREM 5 Let two symmetric SC models be identical except that one with market size
evolution functions {Gs(-)}yr>t>1 and the other with {asi(-)}r>t>1. Assume that, for each

period t, (i) the monotonicity condition (IC0) holds, and (i) Kepi(-) = Hgb,t for some constant
0
’isb,t'
(a) If Gs () > ast(2t) for each period t and each z, we have, for each period t, Bg > B3
Yer = »ygst*, and pcs* < pcs* Thus, for each period t, ’Ayfi*(lt,At) ’yf“é*([t,At) and
P57 (Ie, M) < p§y* (1, Ay) for all i and all (I, A¢) € S.

(b) If, for each period t, &s¢(2¢) > s i(2t) for all 2y and R, 4 (2i4) > Kiqr(2it) > 0 for all 2y,
we have, for cach period t, %% > B, A4S = A%, 5T < pi, and 95 > yS. Thus,
for each period t, 457" (It, At) > 757" (I, Ae), Py (L, Ae) < pgs (I, Ae), and :z:cs*(It,At) >

x$y (It, At) for alli and all (It,At) € S.

Theorem B sharpens Theorem B by showing that if the intensities of the network effect and
the service effect (captured by the magnitudes of a,(-) and w%,,(-), respectively) are higher,
the exploitation-induction tradeoff becomes stronger. To balance the strengthened exploitation-
induction tradeoff, each firm should increase its promotional effort, decrease its sales price, and
improve its service level in each period. More specifically, Theorem B(a) shows that a higher
intensity of the network effect (i.e., larger a4(-)) drives all the firms to make more promotional
efforts and charge lower sales prices. Theorem B(b) further suggests that higher intensities of
both the network effect and the service effect (i.e., larger asy(-) and kf,,(-)) prompt all the
firms to make more promotional efforts, charge lower sales prices, and maintain higher service
levels. Stronger service effect and network effect intensify the exploitation-induction tradeoff,
thus driving the firms to put more weight on inducing future demands than on exploiting the
current market. Therefore, to effectively balance the exploitation-induction tradeoff, all the
firms should carefully examine the intensities of the service effect and the network effect.

Next, we analyze the exploitation-induction tradeoff from an inter-temporal perspective.
Under the service effect and the network effect, how should the competing firms adjust their
promotion, price, and service strategies throughout the sales season to balance the exploitation-
induction tradeoff? To address this question, we characterize the evolution of the equilibrium
market outcome in the stationary and symmetric SC model. In this model, the model primitives,
demand functions, and market size evolution functions are identical for all firms throughout

the planning horizon. In addition, the random perturbations in market demands and market
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size evolution are i.i.d. throughout the planning horizon. The following theorem characterizes
the evolution of the equilibrium promotion, price, and service strategy in the stationary and

symmetric SC model.

THEOREM 6 Consider the stationary and symmetric SC model. Assume that, for each
period t, (i) the monotonicity condition (ICA) holds, and (ii) % is increasing in B55_. For

each period t, the following statements hold:
(a) Bsi = BSi1s Vi = Vero1s Do S Poi1s and Y5 > Yoy

(b) i (L, A) > v (L A), piy (I, A) < pfit (1, A), and 27 (1, A) > z¢5" (I, A) for each i

2y

and each (I,A) € S.

Theorem B sheds light on how to balance the exploitation-induction tradeoff from an inter-

temporal perspective. More specifically, we show that, if the market is symmetric and stationary,

SC

the exploitation-induction tradeoff is more intensive (i.e., 355
;

is larger) at the early stage of
the sales season. Moreover, the equilibrium sales price is increasing, whereas the equilibrium
promotional effort and service level are decreasing, over the planning horizon. The service
effect and the network effect have greater impacts upon future demands (and, hence, future
profits) when the remaining planning horizon is longer. Therefore, to adaptively balance the
exploitation-induction tradeoff throughout the sales season, all the firms increase their sales
prices and decrease their promotional efforts and service levels towards the end of the sales
season. Our analysis justifies the widely used introductory price and promotion strategy with
which firms offer discounts and launch promotional campaigns at the beginning of a sales season
to attract more early purchases (see, e.g., Cabral_ef all, [999; Parker and Van Alstynd, 2005;
Fisenmann_ef all, PO0A).

To summarize, under the service effect and the network effect, the competing firms have
to trade off between generating current profits and inducing future demands. To effectively
balance the exploitation-induction tradeoff, the firms should (a) increase promotional efforts,
(b) offer price discounts, and (c) improve service levels. Moreover, the exploitation-induction
tradeoff is more intensive (a) with stronger service effect and network effect, or (b) at the early

stage of the sales season.

5 Promotion-First Competition

In this section, we consider the promotion-first competition (PF) model, i.e., in each period
t, each firm ¢ first selects its promotional effort and then, after observing the current-period
promotional efforts of all firms, chooses a combined sales price and service level strategy. This
model is suitable for the scenario in which the stickiness of market expanding choices is much

higher than that of sales price and service level choices. For example, due to the long leadtime
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for technology development, decisions on research and development effort are usually made well
in advance of sales price and service level decisions.

Employing the linear separability approach, we will show that, in the PF model, the firms en-
gage in a three-stage competition in each period, the first stage on promotional effort, the second
on sales price, and the last on service level. We will also demonstrate that the exploitation-
induction tradeoff has more involved managerial implications in the PF model than its implica-
tions in the SC model. In the SC model, the competing firms balance the exploitation-induction
tradeoff inter-temporally, whereas the firms in the PF model balance this tradeoff both inter-
temporally and intra-temporally.

For tractability, we make the following additional assumption throughout this section:

pit(Dt) = Pit — Oiitpie + Z 0i;¢pj, for each i and t, (18)

J#i
where ¢;¢,0;¢ > 0 and 0;;; > 0 for each 4, j, and t. Moreover, we assume that the diagonal
dominance conditions hold for each p;¢(-), i.e., for each ¢ and ¢, 65, > Z#i 0ijc and 05 >

> j#i Uit In addition, we make the same assumption as Allon and Federgruen (2007) as follows:

ASSUMPTION 2 For each ¢ and ¢, the minimum [maximum| allowable price p. [p;:] is

sufficiently low [high] so that it will have no impact on the equilibrium market behavior.

We will give a sufficient condition for Assumption 2 in the discussion after Proposition B.

5.1 Equilibrium Analysis

In this subsection, we use the linear separability approach to characterize the pure strategy
MPE in the PF model. In this model, a (pure) Markov strategy profile of firm 4 in period ¢
is given by O'pf (%t( 9, pff( ), f{( ;5 +)), where 77 (I, Ay) prescribes the promotional
effort given the state variable (I, A;), and (plt(lt,At,%) Zt(It,At,%)) prescribes the sales
price and the post-delivery inventory level, given the state variable (I, A;) and the current pe-
riod promotional effort vector v;. Let A7/ (-,-) := (’yf{( ), ’y%( SIS ,'yNt( N, PP, ) =
PRLCom ) BBh ) o)) and e () o= @), el ). We
use atf to denote the (pure) strategy profile of all firms in the subgame of period ¢, which pre-
scribes their (pure) strategies from period ¢ to the end of the planning horizon.

To evaluate the expected payoff of each firm ¢ in each period ¢ for any given Markov strategy

profile Pf in the PF model, let
Vit(It, At\aff) = the total expected discounted profit of firm ¢ in periods ¢,t — 1,--- , 1,0, when starting

fs

period ¢ with the state variable (I;, A;) and the firms play strategy o}’ in periods

tt—1,---,1.

Thus, by backward induction, V; (-, |o¥ ! ) satisfies the following recursive scheme for each firm

1 and each period ¢:

‘/i,t(*[t, At‘aff) == Ji,t(fyff(]—h At)apff(‘[ta Athff(It, At))7 xff(]—h Ata ’yff([tv At))7 Itu At|aff1)7
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where

Jit (Ve Dt e, I, At|Uff1) = E{pitDit(vt,pt) — wir(wiz — Lit) — hig(zie — Dit(ve,pe)) "
—bi (s — Dit(Ve,06))” — Vit (vit) Dit (e, pt)
+5z’Vz‘,t—1(3«"t — Dy(ve, 1), Wt(zt, Dt(%apt); Ay, Et)’ffffm[ta At(}lg)

and Vi o(It, At) = w;0lip. We now define the pure strategy MPE in the PF model.

DEFINITION 2 A (pure) Markov strategy oP/* = {(’yf{*(,),pf{*(,,),xf{*(,,)) (1<
i < N,T >t >1}is a pure strategy MPE in the PF model if and only if, for each firm ¢, period
t, and state variable (I, A;) € S,

(plp;{* (It7 At; ’)/t), .%'I;’{*(Ita At7 %5))
:argmaxpi,te[Bi,t’ﬁi,thi,thiIl{OJi,t}[Ji,t(7t7 [pi,tapziéft(jh Ay, 715)]7 [-%'i,t, xzijzjkt(ltv Ay, %)]7 I, At‘affi)]’ for all ;
and 75{*(115, Ay)

=argmax., ,c(o.5, ] [t ([Vits ’Y]Z];;(It, At)LPff*(It, A, [vit, VTZ;(L&, Ad))), ﬂfff*(ft, Ag, [V, 7%;(-@, A))), I, Ay|o
(20)

Definition 2 suggests that a pure strategy MPE in the PF model is a (pure) Markov strategy
profile that satisfies subgame perfection in each stage of the competition in each period ¢. The

following theorem shows that there exists a pure strategy MPE in the PF model.
THEOREM 7 The following statements hold for the PF model:

(a) There exists a pure strategy MPE oPf* = {(’yf{*(,),pf{*(,,),:cf{*(,,)) 1< <
N,T>t>1).

(b) For each pure strategy MPE oP/* there exists a series of vectors {3} For>t> 1}, where
ff = (ﬁfﬁ, gﬁ, e ﬁ,ft) with Bﬁ{ > 0 for each ¢ and ¢, such that

‘/i,t(IhAt‘Uff*) = wi’tl—z”t =+ ﬁz{Ai,ta fOl“ each ’i, t, and (It,At) S S (21)

(c) If v 4(7it) = it for each i and ¢, oPf* is the unique MPE in the PF model.

Theorem @ demonstrates the existence of a pure strategy MPE in the PF model. As in the
SC model, in Theorem @(b), we show that, for each pure strategy MPE oPf* the associated
profit function of each firm ¢ in each period ¢ is linearly separable in its own starting inventory
level I; ; and market size A;;. We refer to the constant B:Z { as the PF market size coeflicient
of firm ¢ in period ¢, which measures the exploitation-induction tradeoff intensity in the PF
model. Theorem [(c) shows that the MPE in the PF model is unique if v; (Vi) = 7iy4, i-e., the
promotional effort v; ; is the the actual per-unit demand market expanding expenditure of firm

i in period t. For the rest of this section, we assume that v;+(7;+) = 7+ for each ¢ and ¢, and,
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hence, oP'* is the unique pure strategy MPE in the PF model. We use {Bff 2T >t>1} to
denote the PF market size coefficient associated with oP/* hereafter.

The linear separability of V; (-, |0} f *) enables us to have a sharper characterization of MPE
in the PF model. As in the SC model, we can rewrite the objective function of firm ¢ in period

t as follows.
Jit (e, Pty Ty Iy, Atbfﬁ) =E{pi+Dit(vet,pt) — wir(@iz — Lix) — hig(xie — Dig(ya,pe))t
= big(@ip — Dig(v:pt)) — vig (Vi) Dit (v, pr)
+ 51‘Vz‘,t—1($t Di(ve, pe), e (2, De (e, pe), M, Ht)|0' )|It, At}
=E{pitNirdit (e, Pr)Sit — Wit (YiaDNindi o (v, pe) — Lit)
— hit (i Nigdi g (e, pe) — Nipdi g (e, pe) i) ©
= bit (Yit N it (e, pe) — Mg (e, pe)Eie) ™
= Vit (Vi) Niedi e (v, D) it + Siwi g1 (YitNi it (e, pr) — Nt (Ve Pe) i)
+ 8B (NiaZLy + cin(z) Niadig (v, p)€0eZ2) 1 I, A}
=wj L1 + Ai,t{fsiﬂg{_l/li,t + it (ve) pit (Pe) [Pie — Sswii—1 — vie (Vi) + Wf{(yt)]}
(22)
o

where 7 (1) = (Swie—1 — wi)Yis — Lig(yie) + 0B (Kiia (Elyf, A &) )= mie Byl A&al),

JF
and B% = 0 for each .

We observe from (22) that, in the PF model, the payoff function of each firm 7 in each period ¢
has a nested structure. Hence, the competition in each period ¢ can be decomposed into three
stages: In the first stage, the firms compete on promotional effort; in the second stage, they
compete on sales price; in the third stage, they compete on service level. By backward induction,
we start the equilibrium analysis with the third-stage service level competition. Let G 73 be
the N—player noncooperative game that represents the third-stage service level competition
in period t, where player ¢ has the payoff function 7Tp / + () and the feasible action set R. The

following proposition characterizes the Nash equilibrium of the game GY 13,

PROPOSITION 4 For each period t, the third-stage service level competition gff’?’ has a

f. pf*

unique pure strategy Nash equilibrium y} Moreover, for each i, iy > 0s the unique

solution to the following equation:

(dswig—1 — wit) — Lgt(yf{*) + 6 @t 1 t(yz{ )k ut(E(yzt ANé&it)) = 0. (23)

Proposition B characterizes the unique pure strategy Nash equilibrium of the third-stage ser-

7* is the solution to the first-order condition 8y, , 7?7 (v f ") =

vice level competition. Moreover, yp i e TGt

0. Let 7/ A (7711’];*, 7712?];*7 e 771;\; ;) be the equilibrium payoff vector of the third-stage service

level competition in period ¢, where ; e — = T(yP™). For each i and t, let
171 (pile) = pia(pe) (pi — Siwie—1 = via (i) + 70y ). (24)
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Therefore, given the outcome of the first-stage promotion competition, v, we can define an
N—player noncooperative game GY ! ’2(%) to represent the second-stage price competition in
period ¢, where player i has the payoff function HZZ {’2(~\%) and the feasible action set [&7 " Dit]-
We define A; as an N x N matrix with entries defined by A;;; := 20;;; and A;;; := —0;;+ where
i # j. By Lemma B(a) in the Appendix, A; is invertible. Let f;(7¢) be an N—dimensional vector
with fi+ () = @it + it (0wi—1 + Vit (vig) — Wf{*) We characterize the Nash equilibrium of

the game GV 72(~,) in the following proposition.

PROPOSITION 5 For each period t and any given 7y, the following statements hold:

(a) The second-stage price competition fo’Q('yt) has a unique pure strateqy Nash equilibrium

Pff*(%)-

(b) pff* (v) = A7 fi(ve). Moreover, pf{*(’yt) is continuously increasing in ~y;; for each i and
J-

(c) Let Hff*’2('yt) = (H%*Q(%), Hgﬁ*’z(’yt), e ,H%:’z(%)) be the equilibrium payoff vector of
the second-stage price competition in period t, where Hp{*’z(%) = Hg{z(pff*(%)ht). We

1y

have H%*’Q(%) = Qii,t(pﬁ{*(%) — 0jwit—1 — Vig(Vit) + ﬂﬁ{*)Q > 0 for all i.

Proposition B shows that, for any given promotional effort vector 7, the second-stage price
competition GY ! ’2(%) has a unique pure strategy Nash equilibrium p? / (y) = Ay Lt(y). By
Proposition B(b), we have pﬁ{*(O) < pﬁ{*(%) < pf{*(’_yt) for each ¢ and 7, where 0 is an N-
dimensional vector with each entry equal to 0 and 4 := (14,72, -+ ,Yn¢). Thus, a sufficient
condition for Assumption 2 is that p, , < pzp{*(O) and p;; > pf{*(%) for all ¢ and ¢.

Now we study the first-stage promotion competition in period ¢. Let
1 *,2 * *
TP0 () o= T2 ()i (0e) = O (B4 (00) = i1 = vig (i) + 704 bie (0e). (25)

Thus, we can define an N—player noncooperative game G” I to represent the first-stage pro-
motion competition in period ¢, where player i has the payoff function II? {1() and the feasible
action set [0,7;+]. We characterize the Nash equilibrium of the game G” 51 in the following

proposition.

PROPOSITION 6 For each period t, the following statements hold:

a) The first-stage promotion competition GPl s g log-supermodular game.
t

(b) There exists a unique pure strategy Nash equilibrium in the game gff’l, which is the unique

serially undominated strategy of gff’l.

(¢) The unique Nash equilibrium of gff’l, 'yff*, is the solution to the following system of
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equations:

<0, ifr =0,

for each 1,

By ia (407 2(1 — 9ii,t(Af1)ii)V£,t(7£{*) 0, if P e (0,7)

* B * =Y, et > Vist)s
UiaOf) PE ) = it — waGE) + e
>0 if ’th = Yi,t-

(26)

(d) Let Hff*’l = (H’fﬁ*’l,ﬂgﬁ*’l, e ,H%:’l) be the equilibrium payoff vector associated with
vff*, i.e., Hf’{*’l = Hﬁ{’l(fyff*) for each i. We have Hf,{*’l > 0 for all i.

As shown in Proposition B, in the PF model, the first-stage promotion competition in period
t is a log-supermodular game and has a unique pure strategy Nash equilibrium. Moreover, the
unique Nash equilibrium promotional effort vector 7 7 can be determined by (i) the serial
elimination of strictly dominated strategies, or (ii) the system of first-order conditions (E8).

The following theorem summarizes Theorem [@ and Propositions B-B, and characterizes the

MPE in the PF model.
THEOREM 8 For each period ¢, the following statements hold:
(a) For each i, ﬁf’{ = 6&5{_1#@1‘/ + Hﬁ{*’l.

(b) Under the unique pure strategy MPE oP/*, the policy of firm i in period ¢ is given by

(VT (T, M) 020 (T M ye)s 220 (T, Ay 1)) = (V21 000 () Aaal?d pise (P2 () bt ().
(27)
In particular, for any (I3, A¢), the associated (pure strategy) equilibrium price and inven-

tory decisions of firm i are pﬁ{*(yff*) and Amyz{*m,t(])]tof*(fo*))?l)i,t(vff*), respectively.

Theorem B(a) recursively determines the PF market size coefficient vectors, {37 Fir>t>
1}, associated with the unique pure strategy MPE ¢P/*. Theorem 8(b) demonstrates that, under
the unique pure strategy MPE oPf*, each firm i’s promotion, price, and inventory decisions in
each period ¢ depend on its private information (i.e., (Z;j¢, A;¢)) only, but not on that of its
competitors (i.e., (I_;¢, A—;)). Hence, the unique pure strategy MPE in the PF model has the
attractive feature that the strategy of each firm is contingent on its accessible information only.

As in the SC model, we will perform some of our analysis below with the symmetric PF
model, where all firms have identical characteristics. We use the subscript “s” to denote the
case of symmetric market in the PF model. In this case, ps(pt) = ¢st — Osatpit + Z#i Osb.tDj t
for some nonnegative constants ¢s s, 0sqt, and O, where 0sq ¢ > (N — 1), ;. We use a§f* to
denote the unique pure strategy MPE in the symmetric PF model. The following proposition

characterizes afff * in the PF model.

PROPOSITION 7  The following statements hold for the symmetric PF model.
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(a) For eacht =T,T —1,--- 1, there exists a constant Bff; > 0, such that

Vi1, At|0'§£*) = WLt + ﬁi{Az‘,ta for all 7.

(b) In each period t, the third-stage service level competition QQJZ’?’ 1§ symmetric, with the

payoff function for each firm i given by

f{(yt) ((5 Ws t—1—Ws t)yzt_Lst(yz t)‘f’(ssﬂst 1(’isat( yz t/\fzt Z’isbt y]7t/\§j,t]))'
J#
Moreover, Qp 13 has a unique pure strategy Nash equilibrium, which is symmetric, so we

use yi’{* /Wpf*/ to denote the equilibrium strategy [payoff] of each firm in gffz’?’.

(c) In each period t, the second-stage price competition gg{’Q(%) is symmetric if viy = Vi
for all1 <1i,7 < N. In this case, pr’2( ) has a unique pure strategy Nash equilibrium
PP (), which is symmetric (i.e., pPLy(v) = W) (ve), 025 (), -+ 02 () for some
Py () € [p, s Do)

(d) In each period t, the first-stage promotion competition gg{’l is symmetric. Moreover,

gpf’l has a umque pure strategy Nash equilibrium ’ygﬁ, which is symmetric (i.e., Vi{t =
(vfﬁ*mﬁ’{*,' AR for some APL" € [0,75.4])-

(e) Under the unique pure strateqy MPE aé’f*, the policy of firm i in period t is

(VT (T M), D (T M), 2 (T A1) = (725000 (00 Nt s (P2 (70) hst ()

for all (I, Ay) and ~v¢. In particular, for each firmi and any (Iy, A¢), the equilibrium price is

pfj];* (fyfﬁ) and the equilibrium post-delivery inventory level is A; y”% Y Pt (D5 t('yfﬁ))w&t('yfﬁ).

Proposition @ shows that, in the symmetric PF model, all competing firms make the same
promotional effort, charge the same sales price, and maintain the same service level in each

period. The PF market size coefficient is also identical for all firms in each period.

5.2 Exploitation-Induction Tradeoff

In this subsection, we study how the exploitation-induction tradeoff impacts the equilibrium
market outcome in the PF model. As in the SC model, we first characterize the impact of the

PF market size coefficient vectors, {37 Fir>t> 1}.
THEOREM 9 For each period ¢, the following statements hold:
(a) For each ¢ and j # i, yﬁ { * is continuously increasing in 52 {71 and independent of Bﬁ {71
(b) For each ¢ and j # 1, 7r£ { * is continuously increasing in ﬁﬁ {_1 and continuously decreasing

: pf
m 5j,t71

27



Yang and Zhang: Dynamic Competition under Market Size Dynamics 28

(c) For each i, j, and ¢ , pp ¢ (7t) is continuously decreasing in 7rp A

(d) If the PF model is symmetric, fyf ]; is continuously increasing in 7r . If, in addition, the

pf

monotonicity condition (IA) holds, Bf is continuously increasing in 73" as well.

(e) If the PF model is symmetric and (% 7* i3 increasing in ﬂst 1> ’yf{ is continuously in-

creasing in ﬁst 1, whereas pp I (7¢) is continuously decreasing in Bst .- If, in addition,

the monotonicity condition (IC7) holds, Bgt is continuously increasing in BZJ:_I as well.

Theorem O demonstrates that the market size coefficients {ﬁpf 1<i<N,T>t>1}
quantify the intensity of the exploitation-induction tradeoff in the PF model. More specifically,
a larger 37 {_1 implies more intensive exploitation-induction tradeoff of firm ¢ in period t.

[13ad

As in the SC model, we use “~” to denote the benchmark case without the service effect
and the network effect, where the market size evolution function &;(-) = 0 for each firm ¢ and
each period ¢t. Thus, the exploitation-induction tradeoff is absent in this benchmark model,
and it suffices for the firms to myopically maximize their current-period profits. The following

theorem characterizes the impact of the service effect and the network effect in the PF model.

THEOREM 10  (a) For each firm i and each period ¢, ypf* yf{*, f{* > Ef’{*, and

pf* ~pf*
Tt =Ty -

(b) For each firm i and each period t, ppf*(fyt) pf (7¢) for all 4¢. Moreover, if the PF model
is symmetric and () holds, :Uf{*(lt,At,fyt) > 7 *(It,At,%) for all i, t, (I, A¢) € S, and
Tt € [Ovﬁs,t]N

(c) Consider the symmetric PF model. For each period t, 754 > ﬁf{* Thus, 7} (L, Ay) >
’yf{ (I, Ay) for all ¢ and all (I, Ay) € S.

Consistent with Theorem B(a), Theorem MM(a) shows that, the service effect and the network
effect drive the competing firms to maintain higher service levels in the PF model. Theorem
[(b) reveals the impact of the exploitation-induction tradeoff upon the competing firms’ price
and inventory strategy in the PF model. Specifically, given any outcome of the first-stage
promotion competition ¢, in the second-stage price competition, each firm ¢ should charge a
lower sales price under the service effect and the network effect, so as to exploit the network effect
and induce higher future demands. Moreover, in each period ¢, the equilibrium post-delivery
inventory levels contingent on any realized promotional effort vector 7; are also higher in the
PF model under the service effect and the network effect. Theorem MM(c) sheds light on how
the exploitation-induction tradeoff influences the equilibrium promotion strategies under the
service effect and the network effect. In the symmetric PF model, the equilibrium promotional
effort of each firm ¢ in each period ¢ is higher under the service effect and the network effect.

Note that, in the PF model, the equilibrium price and inventory outcomes under the service

effect and the network effect, p@é*(*yff ;) and (I, At,*yfsji +), may be either higher or lower
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than those without market size dynamics, p];;c t(’yf’,:*) and Z7 (It,At,’yss +)- This phenomenon

contrasts with the equilibrium market outcomes in the SC model, where the equilibrium sales
price [post-delivery inventory level] of each firm in each period is lower [higher] under the
service effect and the network effect (i.e., Theorem H(b-i,iii)). This discrepancy is driven by
the fact that, in the PF model, each firm observes the promotion decisions of its competitors
before making its pricing decision. Hence, under the service effect and the network effect,
the competing firms may either decrease the sales prices to induce future demands or increase
the sales prices to exploit the better market condition from the increased promotional efforts
(recall that Vf J;* Vf ’:*) In general, either effect may dominate, so we do not have a general
monotonicity relationship between either the equilibrium price outcomes (i.e., pﬁ{ (’yfsf 1) and
ppf* ('yffz)) or the equilibrium inventory outcomes (i.e. xlt (I, A, ’yfﬁ) and irf{* (I, Ay, ’yfsft))
Therefore, the exploitation-induction tradeoff in the PF model is more involved than that in
the SC model. The competing firms only need to trade off between generating current profits
and inducing future demands intertemporally in the SC model, whereas they need to balance
this tradeoff both inter-temporally and intra-temporally in the PF model.

To deliver sharper insights on the managerial implications of the exploitation-induction

tradeoff, we confine ourselves to the symmetric PF model for the rest of this section.

THEOREM 11 Let two symmetric PF models be identical except that one with market size
evolution functions {Gs(-)}yr>t>1 and the other with {as(-)}r>i>1. Assume that, for each
period t, (i) the monotonicity condition (ICD) holds, and (i) Kepi(-) = Hgb,t for some constant

0
’{sb,t‘

(a) If Gst(2t) > ast(2e) for each period t and all z;, we have, for each period t, Bf > Bst,
ﬁpf*( 1) < pf{*(%) for all i and v € [0 ’_ys N, and vpf* > vpf . Thus, for each period t,
ppf*(lt,At,’yt) < ppt (ItaAt;P)/t) and A "y (It,At) > "}/Zt (It,At) fO?” all ’L (It,At) (S 8, and
Tt € [07%71:]

(b) If, for each period t, dus1(2t) > as¢(2t) for all zp and Ky, 4 (2it) > Ky (2i) > 0 for all 24,
we have, for each period t, ﬁ Bst, @S{* > f{*, pr*(%) < ppf (), and 'ysz* > 'ypf*.

Thus, for each period t, p” (ItyAta'Yt) < py T (I Ay, #00 (I, Agye) > xm (L Aty ve),
’?f{ (Ir; Ay) > ’Yf){*(ltht) foralli, (I, A\¢) €S, and v € [07’}’5,tiN

Theorem M(a) shows that, in the symmetric PF model, higher intensity of the network
effect (i.e., larger a4 (+)) drives all the competing firms to make more promotional efforts and
charge lower sales prices for each observed promotion vector. Moreover, if the intensities of
both the network effect and the service effect (i.e., the magnitudes of o ¢(-) and s, ,(-)) are
higher, Theorem [I(b) demonstrates that all the competing firms are prompted to maintain
higher service levels as well. Therefore, in the PF model, the exploitation-induction tradeoff is

stronger with more intensive service effect and network effect.
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THEOREM 12 Consider the stationary symmetric PF model. Assume that, for each period
t, (i) the monotonicity condition (ICA) holds, and (ii) 775’];* is increasing in 55,{71- For each period

t, the following statements hold:
(a) B2 > BY 1yl > bl ob () < pPEi(7) for each v € [0,7:)N, and AP > AP

(b) DT (I, A, y) < pP0E (1A ), a1 (I, A ) > 2?1 (1A, ), and AP]*(1,A) > 4217 (I, A)
for each i, (I,A) €S, and v € [0, s

Analogous to Theorem B, Theorem [ justifies the widely used introductory price and promo-
tion strategy. More specifically, this result shows that if the market is stationary and symmetric
in the PF model, the competing firms should decrease the promotional efforts (i.e., 'yff]; ) and
service levels (i.e., yi’fz*), and increase the sales prices contingent on any realized promotional
efforts (i.e., pgjz* (7)), over the planning horizon. Hence, Theorem I2 suggests that, in the PF
model, the exploitation-induction tradeoff is more intensive at the early stage of the sales season
than at later stages.

To conclude this section, we remark that, because of the aforementioned intra-temporal
exploitation-induction tradeoff under the promotion-first competition, Theorems II-ITA cannot

give the monotone relationships on the equilibrium outcomes of each firm 4’s sales price (i.e.,

ppf (It,At,ysst)) and post-deliver inventory level (i.e., z} (It,At,'yfsf:))

6 Comparison of the Two Competition Models

As demonstrated above, the exploitation-induction tradeoff is more involved in the PF model
than that in the SC model. In this section, we compare the unique MPE in the SC model
and that in the PF model, and discuss how the exploitation-induction tradeoff impacts the

equilibrium market outcomes under different competitions.

THEOREM 13 Consider the symmetric SC and PF models. Assume that, for each period
t, (i) the demand function p;¢(-) is linear and given by (IR), (i) v;+(vit) = 7is, (iil) the
SCx

monotonicity condition () holds, (iv) Assumption 2 holds, (v) ;¢ is increasing in 355_;, and

(vi) f{ is increasing in Bst 1- The following statements hold:
(a) T 821 > B35 1, obt" > y3§ and 421" > 55,
(b) For each period ¢, there exists an ¢ € [0, ﬁ], such that, if 04, < €054, we have

(i) P > B2 and, thus, Viy(I;, Ado?™) > Viy(I, Aeos®™) for each firm i and all

(It, At) € S,
(i) y2)" > 35

SC*

(ii1) 2% > 35
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Theorem [3 shows that, if the product differentiation is sufficiently high (as captured by
the condition that Og; < €60.4,), the PF competition leads to stronger exploitation-induction
tradeoff (i.e., 5% > Bjct) As a consequence, the competing firms should set higher service
levels and promotional efforts in the PF model. Compared with the simultaneous competition,
the promotion-first competition enables the firm to responsively adjust their sales prices in
accordance to the market condition and their competitors’ promotion strategies. If the product
differentiation is sufficiently high, such pricing flexibility gives rise to higher expected profits of
all firms and more intensive exploitation-induction tradeoff in the PF model.

Theorem 3 also reveals the “fat-cat” effect in our dynamic competition model: When the
price decisions are made after observing the promotional efforts in each period, the firms tend
to “overinvest” in promotional efforts. As shown in the literature (e.g., Fudenberg and Tirole,
T984; [Allon and Federgruen, 2007), one driving force for this phenomenon is that, under the
PF competition, the firms can charge higher prices in the subsequent price competition with
increased promotional efforts in each period. Theorem @3 identifies a new driving force for the
“fat-cat” effect: The firms under the PF competition make more promotional efforts to balance
the more intensive exploitation-induction tradeoff therein. Therefore, our analysis delivers a new
insight to the literature that the exploitation-induction tradeoff may give rise to the “fat-cat”

effect in dynamic competition.

7 Conclusion

This paper studies a dynamic joint promotion, price, and service competition model, in which
current decisions influence future demands through the service effect and the network effect.
Our model highlights an important tradeoff in a dynamic and competitive market: the tradeoff
between generating current profits and inducing future demands (i.e., the exploitation-induction
tradeoff). We characterize the impact of the exploitation-induction tradeoff upon the equilib-
rium market outcome under the service effect and the network effect, and identify the effective
strategies to balance this tradeoff under dynamic competition.

We employ the linear separability approach to characterize the pure strategy MPE both in
the SC model and in the PF model. An important feature of the MPE in both models is that
the equilibrium strategy of each firm in each period only depends on the private inventory and
market size information of itself, but not on that of its competitors. Moreover, the exploitation-
induction tradeoff is more intensive if the service effect and the network effect are stronger; and
this trade-off decreases over the planning horizon. The exploitation-induction tradeoff is more
involved in the PF model than in the SC model. This is because the competing firms need
to balance this tradeoff both inter-temporally and intra-temporally in the PF model, whereas
they only need to balance it inter-temporally in the SC model. More specifically, in the SC
model, to effectively balance the exploitation-induction tradeoff, the firms should (a) increase

promotional efforts, (b) offer price discounts, and (c) improve service levels. In the PF model, the
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firms should increase promotional efforts under the service effect and the network effect. Given
the same promotional effort in the first stage competition, the firms need to decrease their sales
prices under the network effect. However, with an increased promotional effort in the first stage
competition, the equilibrium sales prices in the second stage competition may either decrease
to increase. Analogously, the equilibrium post-delivery inventory levels may either decrease or
increase in the PF model under the service effect and the network effect. Finally, we identify the
“fat-cat” effect in our dynamic competition model: If the product differentiation is sufficiently
high, under the MPE, the firms make more promotional efforts in the PF model than in the SC
model. The driving force of this phenomenon is that the exploitation-induction tradeoff is more

intensive under the promotion-first competition than under the simultaneous competition.
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Appendix A: Proofs of Statements

We use 0 to denote the derivative operator of a single variable function, and 0, to denote the partial

derivative operator of a multi-variable function with respect to variable x. For any multivariate con-

tinuously differentiable function f(x1, 22, -+ ,x,) and Z := (&1, Za, -+ ,Ty) in f(-)’s domain, Vi, we use
Oy, f(Z1, %2, -+ ,Zpn) to denote Oy, f(z1,22,  * ,&n)|z=z. The following lemma is used throughout our
proof.

LEMMA 1 Let G;(z,Z) be a continuously differentiable function in (z,Z), where z € [z,Z] (z and
Z might be infinite) and Z € R™ for i = 1,2. For i = 1,2, let (z;, Z;) := argmax(, 5)Gi(z,Z) be the
optimizers of G;(-,-). If 21 < 29, we have: 0.G1(z1,21) < 0,G2(22, Z2).

=0 if z; > 2, =0 if zo < Z,

Proof: 21 < 29,50z < z1 < 29 < Z. Hence, 0,G1(z1, Z1) and 0.G2(z2, Z3)

<0 ifz =z >0 ifz =2

i.e., azGl(Zl, Zl) S 0 S azG2(22,Z2). O

Proof of Theorems -2 and Propositions M-2: We show Theorem 0, Proposition 0, Proposition B,
and Theorem B together by backward induction. More specifically, we show that, if V; ;1 (Iy—1, As_1]|0f%) =
w; 111+ B _1Ai¢—1 for all 4, (a) Proposition 0 holds for period ¢, (b) Proposition 2 holds for period
t, (c) there exists a Markov strategy profile {(v;¢"(-,-), pi%*(+,-), #7¢"(,-)) : 1 <4 < N} which forms
a Nash equilibrium in the subgame of period ¢, (d) under conditions (i) and (ii) in Theorem M(c), the
Nash equilibrium in the subgame of period t, {(v;¢*(-, "), pi$* (-, ), {5 (,-)) : 1 <@ < N}, is unique, and
(e) there exists a positive vector 4;¢, such that V; ;(I;, A¢elof™) = wili¢ + BiGA: s for all i. Because
Vio(Zo, Ao) = w; 0l;0 for all 4, the initial condition is satisfied.

Since Vi 4—1(Li—1, Ae—1|07) = w; 41— 1[i7t—1 + Bi4_1Ai,t—1 for all i, Equation (2) implies that the

objective function of player i in Gi“? i

w5 () = (Giwin—1 — win)yir — Lia (i) + 68551 (hiit Blyy A&id) =Y ke (Blyy A&ial)).
J#i

Thus, for any given strategy of other players y_; ¢, player ¢ maximizes the following univariate function:
CiWie) = (0wip—1 — wit)yie — Lit (Yie) + 68551 #iie (Blyiy A &ie])-

Ifyie <0, (Yir — &)™ =0, (Wie — &t)” = it — Vi, and, thus, —L; 1 (yi)) = —bi/B(&ie — vis) =
—b;+ + bi1y;¢. Moreover, y; ; < 0 implies that §; f"jflmm(]E[y; AN&itl) = 0iB75_1ii+(0). Hence, if
Yie <0,

PiWie) = =bi s + (0iwi -1 — wit + bi )i + 0BG 1K4i,6(0).
Because b; s > w; s — d;w; 1, (J5(+) is strictly increasing in y; ; for y; s <0.

Observe that —L; ,(-) is concave and continuously differentiable in y; ;. Since ]E(ylJr +N&i+) is concavely
increasing and continuously differentiable in y;; for y;, > 0, and k;; +(-) is concavely increasing and
continuously differentiable, mi,t(E[y;’r » N\ &4]) is concavely increasing and continuously differentiable in

v+ for y; + > 0. Hence, f%() is concave and continuously differentiable in y; ; for y; + > 0. Observe that

By, CH(0+) = Siw; 41 —w; 1+bi 1 +0: 3551 Fi 1 (0)rg; (B(OAE; 1)) = iw; 11 —w; 1+bi e +0: 3751 K5 1(0) > 0,

where the inequality follows from d;w; 1 — w; ¢ + b;r > 0 and x; ,(0) > 0. Therefore, the optimizer of

29(), i7", is the solution to the first-order condition: 9y, ,(7(y;¢*) = 0, or, equivalently,

(5iwi7t*1 - wi,t) - L (yzéct*) +di 62 t— 1F’L t(yz t ) Kis, t(E(yfct* A fi,t)) =0.
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ScCx*x

Because &;; is continuously distributed, y7$* is unique for each i. Moreover, y;$* > 0 and (] t(yfct*) >
$0(0) = —bi,e + 0:B3;5_1 ki, (0) for each i.

We now show that Proposition 2 holds for period ¢. Since ¢§(y;$*) > (7¢(0) = —b; ¢ +6:8;¢_ 1 ki, (0)
and a¢(2¢) 2 #ii ¢ (0) 721’#1’ Kije(1) = 0, we have 75" > (75(0) —6; 8754 i Kijt(1) > —b; . Observe
that

Pit — 0iwit—1 — Vit (Vi) + T8 > iy — 0qwip—1 — Vie(Vit) — biy > 0.

S('*

Thus, if pi¢ = Pit, Pit — Oiwit—1 — Vie(vie) + 775 > 0. Therefore, each firm 7 could at least earn a

positive payoff of (5; ¢ —d;w; -1 — Vit (Fit) — bz‘,t),m by charging the maximum allowable price ; ;, where

€, 7= {0 (V) pie(Pe) = e € [0,71,6]%[0, 2, ] - < [0, AN ] X [py (5 D1 X[py o Poel XX [Py s Dve]} > 0.

Let

€0 = max{i s (V) pit(Pe) : v € [0,71,e]}[0,2,e] - X [0, AN ] X [Py 5 D1 X [Py o Paal XX [Py DNA]} > € -

sclt

Hence, we can restrict the feasible action set of firm ¢ in G, o)

(Pit — Oiwii—1 — Vit (Fin) = bit)g
Aict’l = { (it pit) € [0, 7] X[p, P, ;»Pi, t]t Pip—0iwi i1~ Vi (i) > - L z o SR S 03,
it

which is a nonempty and complete sublattice of R?. Thus, I155 (%, pe) > 0 and

log (L5 (7, pt)) = log(pit — Sswie—1 — Vit (Vie) + 77%") +1og(ie(vt)) + log(pit (pe)) (28)

is well-defined on Afft’l. Because p; () and ; +(-) satisfy (B) and (@), for each i and j # ¢, we have

O?log(I55 (e, pe)) 9% 1og(piye — Giwie—1 — Vit (ie) + 755F) Vi1 (Yit)
= = scx\2 Z O’
07:,40Di + 07:,:0pi ¢ (Pist — Sqwip—1 — vig(Vie) + 77F)
O log(IL35 (o)) _ 0 log (L5 (e, p0)) _ P log(Whi(m)) o
07:,t0pj 4 ’ 0710V iy
02 log(T1 (7, 02 10g(IT35 (1, 210g(ps
og( z,t(’Yt pt) —0, and og( z,t(% Pt)) _ 0 log(pi(pe)) >0.
api,ta%‘,t 8pi,tapj,t api,tapj,t

Hence, G; “lis a log-supermodular game and, thus, has pure strategy Nash equilibria which are the
smallest and largest undominated strategies (see Theorem 5 in Milgrom and Roberts, T990).
Next, we show that if conditions (i) and (ii) in Theorem 0O(c) hold, the Nash equilibrium of GF*" is

unique. First, we show that under conditions (i) and (ii) in Theorem M(c),

0 log IT35 (¢, e ) <0 0 log I3 (7¢, pt) Z 0? log (1135 (72, pt)) zN: o log (1135 (¢, pt))

, > (29
op3, | op3, | pare Opi19p; ¢ = Opi 1971 (29)
8 1og T15 (s, 92 10g T3 (7, 9 1og (1155 (s, N 92 log(IT5 (v,
g z;(% Dt) <0, and | g z2t(’7t pt)‘ S Z g( z,t(% pt)) +Z g( z,t(% Pt)). (30)
ol Vit Oy Vit Py 07,10, ¢ = 07i,t0pj ¢
Note that, by (E8) and (@),
02 log Hzt(%,Pt) _ 02 log pi +(pt) B 1 <0
api,t 51712,15 (Pi,e — Oiwis—1 — Vie(Vie) + WSC*)2 ’
and 5
|5 10ngfi(’Yt,pt)‘ _ |82 log pi’t(pt)| 1
ap?, Iz, (Pit = diwig—1 — vig(Vin) +755)2
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9% log (155, (v¢,p¢))

Since =0 for j # 4, and

Opi 107t
9 log (I35 (e, i) Vi ¢ (Vi)
Opi 107t (it — Siwie—1 — vig(Vie) + 7752
we have
|82 log I3 (2, pe) | = ‘32 log pi ¢ (pt) | 1
P, o3, (Pis = Giwip—1 = via (Vi) +757)?
. 9 1og(TI35 (e, pr)) N Vi (Vi)
oy 0p; +0p; ¢ (Pit — Siwip—1 — vig(Vin) + 775)?
_ Z o log(Hfﬁ(%,pt)) n i 0? log(Hf,ct(VuPt))
= OpisOpis = i

where the inequality follows from (@) and condition (i). Hence, (E9) holds for all ¢ and all (¢, ps).
Since v/,(-) > 0 and (B), we have

Plog 1L (v, pe) 02 log e () Vi(Ve) it — Siwi 1 — via(yin) + m55°) + (V] (7))

= — <0,
3, N, (Pit — Siwip—1 — Vit (Vie) + mEF)?
and
P 1og I (v, pe) . 02 logabie(e),  Yie(ve)Pive — Siwi e — Vit (Vi) + 755) + (Vi 1 (%))?
| 2 | = | 2 | + . . . . sc*\2 .
a%‘,f, 871:71& (Pi,e — Oswit—1 — Vi (Vi) + Tt )
2 sc
Since W =0 for j # 4, and
9 1og(IL35(ve, pe)) Vi (Vi)
07i,t0pi (it — Oiwie—1 — Vi (Vi) + 7552
we have
|32 logﬂfﬁ:(%apt)| _ |32 log 5 + () I+ v () (pie — Siwi g1 — vie(ie) + m55°) + (U 1 ())?
My My (Pit — Siwip—1 — vig(Vin) + 775)?
S Z 0? IOg(Hf§(7t7pt)) i Vz{:t(’Vt)(Pi,t = dqwi -1 = Vie(Vig) + Qi,t) + (Vz{,t(’yt))Q
Foy 074,607} ,¢ Pit — Oiw; e—1 — Vit (Vi) + ch{k)Q
9? 1og(Hf§ (ve>p1)) Vz{,t(%‘,t)
> D * 5 Ty
gy Yi,t07j,t (Pit — 6w -1 — Vit (i) + T4 )
_ oy 0° log (1135 (7, pr)) XNI 0° log (1135 (7, pr))
i a%‘,ta%',t = 3’Yi,tapj,t

where the first inequality follows from (@) and 7}¢" > ¢; ;, and the second from condition (ii). Hence,
(B0) holds for all ¢ and all (¢, p).

We now show that if (29) and (80) hold, Gi“" has a unique Nash equilibrium. Recall that the set
of Nash equilibria in G; “! forms a complete lattice (see Theorem 2 in Zhou, 1994). If, to the contrary,
there exist two distinct equilibria (v;, py) and (3;, pF), where pi+ = pi4 for all i and 47, > 77, for all j,
with the inequality being strict for some ¢ or j. If, for some ¢, pi, > piy, P;, — i, > Dt — Dly for all I,
and p}, —pi, > ¥’y — ¥ for all [, without loss of generality, we assume that ¢ = 1. Lemma [ suggests
that

Op. Jog(I1 (47, 97)) = Oy, Jog (LT (77, p7))- (31)
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On the other hand, by Newton-Leibniz formula, we have

Opy  Log(TT%, (%7, 7)) = Opy , Jog (I35 (7, )

_ /1 [XN:@*‘ _ )32 log (I35 (1 — )7/ + 597, (1 — s)pf + spf))
s=0 »t o 3p1,t5'py,t
N 2 5 * 2% * A
" 8 log(Hift((l —8)7 + 89, (1 — 8)pi + sp;))
+Z ’YJt /YJt aplta’yjt ]dS
- /1 [ZN:@* . )3 log (I35, ((1 — )7/ + 5%, (1 — s)pf + spf))
= —o = 1.t 1,t 8pl,tapj,t
N ~
9 log(I35 (1 — )77 + 59, (1 — s)pf + sp}))
+Y i —p ds
]z:;( 1, t) apl,ta’y‘],t ]

where the first inequality follows from pi, — pi, > pj, — pj, for all l and p7, —p7, > 47, — 7, for all [,
and the second from pj ; — pj, > 0 and (29). This contradicts (BT).

If, for some j, Y7, > Vi, V50 — Ve = Diy — piy for all , and 47, — 77, > 4/, — 7/, for all [, without
loss of generality, we assume that j = 1. Lemma [0 suggests that

Oy, Log(I55, (%7, 57)) = Oy, Tog(I75 (775 7)) (32)
On the other hand, by Newton-Leibniz formula, we have

Oy, 1og (I35 (375 7)) — Oy, Lo (T (7, 7))

_ /1 [EN: (g, — oy P8I = )3 + 537, (L= s)pi + 5pF))
s=0 723 e ht 01,605t
N
. 0 log(I11% (1 — s)v + s9;, (1 — s)p; + sp7))
j;( 7.t _],t) a’yl,tapj,t ]
_ /1 [ZN:@* e P loa(T (1~ )2 + 37, (1= s)pi + 5pi))
T Js=0io b 71,6074
N 2 16 * 2% * A%
9% log(I1% (1 — s)v + s%;, (1 — s)p; + sp;))
+) (Ghe—n : ds
;( 1,t lt) 871,tapj,t ]

< 0,

where the first inequality follows from 47, — 7, > pj, — p[, for all l and 47, — 7, =/, —;, for all [,
and the second from 47, — 77 ; > 0 and (B80). This contradicts (82). Therefore, the Nash equilibrium in
¢! is unique, if conditions (i) and (ii) in Theorem O(c) hold.
I vi¢(vie) = vit, we have v 4 (vie) = Land v}/, (vi) = 0 for all v, ; € [0, 7). Thus, if v; 1 (vie) = Yi.e,
conditions (i) and (ii) in Theorem M(c) hold.
Note that for any A € [0, 1] and (vi,, i), (Yt Pie) € [0,72,6] X [0,52,0] X -+ x [0, 4n,4] X [p, 5 D1.4] X
[Buvﬁzt} Xoeee X [BMHP_N,t]a

Mog(pi e — diwie — vit(Yie) +m757) + (1= A) log(pie — diwie — vi(vie) + 75)
log(Apit + (1 — N)pie — diwi e — Avie(Fie) — (1= Nvie(vie) +705)
log(Api,t + (1 — N)pie — swi e — Vie (M + (1 — N)vie) +755),

IN

IN
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where the first inequality follows from the concavity of log(-), and the second from that log(-) is an
increasing function and v; 4(-) is a convex function. Thus, log(pi s — d;wi s — vi (i) + 75¢°) is jointly
concave in (7; ¢, pi¢). Hence, the diagonal dominance condition (8) and () implies that log(IL{5 (¢, pr)) is
jointly concave in (v; ¢, p;+) for any given (y_; ¢, p—;+). Therefore, the first-order conditions with respect

SCx* SC*

to 7+ and p; ¢+ is the necessary and sufficient condition for (vf¢*, p;®*) to be the unique Nash equilibrium

. se. 1 .
in G/“". Since

Oy, it () Vz{,t(%)

0, , log(II55 (v, pt)) = — ,
i 1085 (e, Pe)) Vit (7e) Pig — Owip — vig (Vi) + 755"

and

Op, it (Pt) 1

0, i log 1174 T, Pt)) = Pit )
b log(TIEi( ) pit(Pt) Pit — Owie — Vit (Vi) + TG
the Nash equilibrium of Gi“! is a solution to the system of equations (IF). Since Gi' has a unique
equilibrium, (3) has a unique solution, which coincides with the unique pure strategy Nash equilibrium

of G, As shown above, for all 4,
IS (i pi™) 2 (Pit — diwig—1 — Vie(Vie) — bi)e; 4 > 0.

Hence, 113§ = I35 (77", pi**) > 0 for all i.

Next, we show that {(v;¢, 075" Aiyi$ pie (P )it (7)) + 1 < i < N} is an equilibrium in
the subgame of period t. Since y¢* > 0, Aj iy pie(Pi)it(7*) > 0 for all i. Therefore, re-
gardless of the starting inventory in period ¢, I; ¢, firm i could adjust its inventory to z7%" (I, Ay) =
N yi G pie (PP )i (7). Thus, by Propositions T8, {(v;¢", pi5", Aieyi s pie (07 )i (7)) 1 < i <
N} forms an equilibrium in the subgame of period t. In particular, if conditions (i) and (ii) hold,
{5 pi N yi T Pt (PE )it (7)) : 1 <4 < N} is the unique equilibrium in the subgame of period
t.

sc sc

Next, we show that there exists a positive vector 5;¢ = (875, 85%, -+ , B¥ ), such that Vi (I, A¢|ofe*) =
wi ¢y + BiGAie- By (I2), we have that

‘/i,t(ItaAt|ch*) = Ji,t(%sc*apfc*, Ai,tyf,i*Pi,t(Pfc*W}i,t(’Vtsc*),It7At|Ufi*1) = wz‘,tfi,t-f—(Uzﬂfﬁqﬂi,t'i‘nfft*)f\i,t.

Since 8i¢_; > 0 and I} > 0, 87§ = 6:8;5_1pi,e + 179" > 0. This completes the induction and, thus,
the proof of Theorem [, Proposition 0, Proposition B, and Theorem B. [

Proof of Proposition B: By Theorems I-8, and Propositions -8, it suffices to show that, if there

exists a constant 35_; > 0, such that Vig—1(Lli—1, Ae—1]|0§9Y) = wseli—1 + B55_1MNis—1 for all 4, we

sc,2 sC* sc*

have: (a) the unique Nash equilibrium in G;™” is symmetric, i.e., y;¢* = y;5" for all 4, j; (b) the unique

Nash equilibrium in Gi" is symmetric, i.e., (5 p55) = (Vs ps
constant ﬁfi > O7 such that V;‘,t(lt, At‘O'iCt*) = ’wsﬂgli,t + B:,CtAZ,t for all 7. Since ‘/;,O(Ita At) = ws70]i70 for
all 4, the initial condition is satisfied with 5% = 0.

Since ‘/i,tfl(ltflyAtfl‘oﬂtsi*l) = wsytfi,t,l + B;%Ai’t,1 for all i, by (D),

) for all ¢ # j, and (c) there exists a

Wf?(yt) = (szs,t—l - ’ws,t)yi,t - Ls,t(yz’,t) + 5sﬂ§§_1(ﬁsa,t(E(yIt A §z‘,t)) - Z Hsb,t(E(y;:t A fj,t)))-
JFi

Hence,
G5 (i) = (Osws 1 — ws 1)Yit — L t(Yit) + 08551 Fsat (B(y; A i)
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Thus, ¢75(-) = ¢(55(-) for all i and j. Therefore, for all ¢ and j,

gt

y; ¢ = argmax, (;y(y) = argmax, (75 (y) = y;5

and, hence,

T = ma W) = () = i

We denote y;¢" = y;¢" for each i, and 7" = 7/¢" for each i. Observe that, the objective functions of

sc,1
t )
sc*}

{55 (ves ) = ps,t(Pe) Vst (V) [Pise — Osws t—1 — Vst (Vie) + 7

are symmetric. Hence, if there exists an asymmetric Nash equilibrium (y;¢*,

Nash equilibrium (*ysc*,pfc*) # (v, pi®*), where 7;¢* is a permutation of 77

of pfe*. This contradicts the uniqueness of the Nash equilibrium in G;“ L

sc,1

equilibrium in G, is symmetric. Hence,

SC*]

IG5 = I3 (vish pECh) = st (D)% 1 (Ve PSS —0sws s 1= v (V35) +708Y

Thus, we denote the payoff of each firm 4 as I13%". By Theorem B(a),

1<i<N}

pi°*), there exists another

and pfc* is a permutation

Thus, the unique Nash

155 (vsses pssie) = 155 > 0.

fe = 0B s e I = 0585y pse + 15T = 575 > 0.

Thus, we denote the SC market size coefficient of each firm i as 57$. This completes the induction and,

thus, the proof of Proposition B. [

Proof of Theorem B: Part (a). Clearly, by (I3), y;" is independent of 375 _

, for all j # i. Moreover,

because
PC5 (i) ) 0iFia(yia)wi  (E(yie Ain)) >0, if i > 0
ayi:taﬁfﬁq 0, otherwise,
5 (yie) is supermodular in (y; 4, B5_;) . Therefore, y?* = argmax,  p(f5(yi) is increasing in

ScC*

7¢_1- The continuity of y7¢" in 57, follows directly from the continuous

in (i, B7G_1). This completes the proof of part (a).

differentiability of ¢(7§(-)

Part (b). Note that, by part (a), 3, wint(B((y7$) T A&e)) is independent of 57¢ ; and continu-

ously increasing in 37$_; for j # i. Moreover,

G5 (Wie) = (Giwii—1 — i) Yie — Lie(Yie) + 08551 kit (Blyiy A ie))

is continuously increasing in 57;_; and independent of 85 ; for all j # 4. Thus,

Wf,i* = [ma>xo i i(it) Z Kig, t( yjﬁ* NEjt))
J#

is continuously increasing in ;_; and continuously decreasing in (;5_; for all j # i. This completes

the proof of part (b).

Part (c). We denote the objective function of each firm i in GJ7 as 15 (, |

dependence of the objective functions on 775"

The unique symmetric Nash equilibrium in G

3% to capture the

1.
5% is denoted

as (v5s (w37 ) Pt (7)), where 4 g% (mi) = (V3 (m8y), v (m8)s - s (i) and Pii*t( o) =

(pzct*( s ) s (i), pe (me)). It suffices to show that, if 755" > 7%

and p3 (75) < Py (757)-

s

41
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We first show that pi% (755) < pi§(ms%) for all 7% > 7%, Assume, to the contrary, that
P (R3T) > pi (%), Lemma O implies that

Oy Jog (I (Ve (T3 ) P (TSI ) 2 Opy  og (T3 (755 (mg7)s pese () Imss))

ie.,
Opn. 108 pe s (D353 (7I7) + :
t 0, S, pss S sSC* * Sc*k —SC*
P OB Pt an Tt )T e (Re) — Ostsit — Va2 (2 ) + 72
X (33)
28 1 Ing t(psi*( SC*))+ Scx Sc* ScC* scx *
e ° ® St pst( ) 6w5t 1= I/St(’y‘st( ))+7Ts,t

By (@) and Newton-Leibniz formula, we have

apltlogpSt(psst( Sc*))_apl,t IngS t(p::st( sc*))

1 X 021og ps¢ (1 — 8)p3S4(m357) + sp3h (735°))
= [ ) i ) e R R
S s Js

=052
< 0.

Hence, inequality (B3) suggests that
Pt (TEF) = Osws 1 — ve (VST (RET)) + 7T <Pt (78F) — Oswo i1 — s (V37 (73F)) + 73 (34)

Since pi(7ey) > pisy (mey) and mlT > mif, ve (Ve (T3F)) > van (Ve (m37). Thus, 35 (735) >
Vo (m5). Lemma Myields that 0y, , log(I7% (vi5 (737), P (TS )IET) = 0y, , Jog (I (33 (w3 ), s (s

ie.,

Vet (Vs (75F))

a’h,t log 1/)5 t(fygs t( SC*)) sc*( )

ps 6 ws 1 — Z/S ,ysc* SC* + 7TSC*
t i &
Vst st
> 1 Scx [ __SCk Vst
ZUy1t ngs t(’}/s.s t( )) pict*( sc*) 6sws,t71 _Vs,t('ygct*( w5 ))_|_7-(—30*
Since s ¢(-) is convexly increasing, v, , (755 (755) > vg (755 (7557)). Thus, inequality (B4) implies that
Va0 ) _ s (n25)
PG (FY) — Sawsao1 — v (G (W) + TG T PG (M) — Sswsm1 — v (335 (M) + G
Hence, (BH) suggests that
Oy J0g s 1 (755 (TST)) > 0y, log st (P3G (75T))- (36)
By (B) and Newton-Leibniz formula, we have
A1 10895 1 (V55 (T57)) = O, 10 s i (P35 (757))
N ScC* Sc* SC* *
— /1 [Z(,Ysc*( sc*) ,Ysc*( sc*))a2 logd)s,t(( )733 t( ) + SrYss t( ))] ds
=0 - o .10
< 0,
which contradicts (88). Therefore, for all 735 > 7%, we have pi§*(73%) < piG (75%)-
We now show that ;¢ (737) > 7s¢ (me") for all @5 > w59, Assume, to the contrary, that

YVei (TG ) <725 (m5% ). Lemma O implies that
Oy, Mo (I (V35 (T350), e (FEITET)) < Oy, Jog (I, (75 (7, RS (M0 )),

42

)

7.(.59*))7



Yang and Zhang: Dynamic Competition under Market Size Dynamics 43

ie.,
sc* s ,t (’ygct*( gct*))

8 ) 10 ScC*
Y1,t ng[}s,t(’)/sst( )) qc*( ) §wst | — Vst('}’;(%*( ;f»*))_i_wgc*

pst
(Vs (m35)
<0, og e s (V2S5 (755 Vea 05 (s :
>Unyq, Eﬂﬁ t(’Y t( )) pgct*( ) 5 sWs -1 — Vst(,y:ct*( 87 ))—I—ﬂ'“*

By (8) and Newton-Leibniz formula, we have

Oy, 108 05,1 (e (137)) — Oy 108 s 1 (V351 (TET))

/1 [ZN:WC*( see) _ et SC*))aﬂogws,t(svz;i( 7o)+ (1 — )72 (755))
a—0 = s,t s,t s,t s,t 871,168’)’]’,15

]ds < 0.

Hence, inequality (B7) implies that

Vet (Ve (75F)) - Vet (Ve (m57))
P (W) dweamt — v (BT (@) A TG P (M) — Sswsamt — ve (135 (1)) + g

Since v ¢(-) is convexly increasing, vg , (755 (755)) < vi 4 (v:5 (755°)). Hence,

PR () = Butn gt = w035 (R30)) 735 < 0 (R35) = oy — v (025 (r35) + 35

Since vq t('yg‘;*( Sc*)) Vs t(vjct*( ict*)) and 7Y > m T, pict*( Sc*) < pzct*( SC*) Lemma O implies that

Opy , Log (T35, (Vi (73 ), pesh (RETNTE)) < Oy Jog (TS (357 (w87 ), pss (w1 mey’)), e,

1
Orn 108 Lot W T8 ) e ety s — vealr2 (e ) + 737
X (38)
<Op,.. 10g pst (P33 (T35)) + P (M) Svwnat — (G (M) T A
Because
1 1
Pt (REG) = Osws i1 — vt (VET (RET)) + 73T g P3G (M3G) = dsws i1 — v o (VST (5F)) + 755
we have that
Op 108 st (D35 (TST)) < Opy , 108 ps e (DS (7ET))- (39)

By (@) and Newton-Leibniz formula, we have

Opa, 108 st (D557 (T37)) = Fpa 108 s o (055 (7))
- 0 log ps 1 (PSS (w3 ) + (1 — $)p3g (73))

1
— SCx ScCx* SC* Scx ’ dS
/SZO[;@H( 7)) S |
< 0,

which contradicts (B9). Therefore, for all 735" > 735", we have v{$*(75%) < 75 (m5%). The continuity
of vi¢(m$%) and pi§(mi%) in 73§ follows directly from that TI7G(ve, pe|msS") is twice continuously
differentiable and the implicit function theorem. This completes the proof of part (c).
Part (d). By Theorem B(a), 385G = 0,05 is,:+1I5, it suffices to show that 1135 (75%") is continuously
increasing in 725, where T35 (x35) 1= T2 (4564 (n250) 22 (1557)).
Since part (c) implies that p3% (755) < pi% (73%) and V37 (75%) >

Y5 (m3%), the monotonicity condition (IC7) implies that

—SCx*x ScC*

Assume that 739 > 7%

Pt (P35 (T3F)) = ps(P55(m55)) and ¥ 1 (V353 (T3G)) = Vst (Vas i (T55))- (40)
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I pi (735) = p37 (m3F) and 25 (T3F) = vo7 (m3F), by 735 > w3, we have

Pt (RET) = Osws o1 — vet (VST (RET)) + 7T > i (78F) — swsp—1 — st (V2T (73F)) + 7l
Thus,

IG5 (737) = RSO (mey), ped (REDITET)
(RS (FET) = Oswsi—1 — s, (V37 (REF)) + TG ps (0367 (7)) st (Ve (FET))
(P (mF) = Osws i1 — vt (ST (WET)) + 75 ) ps e (DL (3T )) Vst (Ve (7))

IG5 (ves (w3 ), P (8 )Imes)
= T (ry)-

\%

If psc*( ) < pgct*( ) Lemma 0 yields that

Oy Jog (I, (5 (T ) Ve (RENTET)) < Opy  Jog (55 (P38 (8 )s ves (e ) Imes))

ie.,
Opy . 10g ps,t (P55 (T55)) + :
Pt st P (T5T) — Gswsp—1 — Vs e (VT (T3F)) + T35
) (a1)
Sa th S p;g* .:(‘* + * * C* * "
i 108 PotOoniTat ) ¥ e et bttt — von 02 () 725
By (@) and Newton-Leibniz formula, we have
Opy .. 108 ps,t (Pese(T3F)) — Opy, 108 pse (P25 (73F))
1 N 82 10 SCx sc>s< SCx scx
gpst(( )pss t( )+5p35t( ))
— ic* SC* zc* SC* ) dS < O.
/ [ i) i ) o 1
Hence, (E) implies that
Pot (FeF) — Osws 1 — s (Vo (RIF)) + 755 > 0o (m35) — dswsie—1 — Vst (755 (m0F)) + 7oy
Therefore,
I (mes) = IS (vien (7)), pea () |mes)
= (pif (7)) — 6swsip—1 — Vs e (Vo (T57)) + T35 ) Pt (Do (3G ) s t(Vos (T55))
> (DL () = Osws -1 — Vs (V3G (3F) + oG ) Pt (Do (Mo ) Ws it (Vs (M)
= I (veer (Mo ), Pese (mei)|mes)
= I ().
prsc*( ) pgct*( +¢) and 7“*( e )>7§‘§*( 753 ), Lemma [ yields that
Oy Jog (I (ogy (T35 )s Vaan (Mo ITa 7)) = Onyy, Log (LTS (P (M35 ) s Ve (30 m350)),
ie.,
Ve (Ve (735))
8 t10g¢5 /7:"‘950* 5t - * t % * *
i 08 et O e ) — St — a2 ) 705 "

sox | _sex Ve (Ve (m5F))
28’71,1, IOg ws,t(’)/ss t( )) pq(‘t*( ) 5 W1 — Vs t(,ye(%*( )) + ﬂ_sc* .
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By (@) and Newton-Leibniz formula, we have

Oy 108 s 1 (Vo5 (TE7)) = Oy, 10 st (VIS (737))

N SCk (—SCk * *
/1 [Z(,ysc*( sc*) ,ysc*( sc*))a2 logws t(S’YSEt( sct ) + (1 - S)V§§t( Y ))
s—0 = st \ st st Tst a’}/l,ta’}/j,t

Jds < 0.

Hence, (B2) implies that

5t (Ve (T5)) o Vet (Vi (m57))
G R R ) A o (cotd | R T o
(43)
Since v ¢(-) is convexly increasing, vg ,(vs5 (755)) > vi (735 (755°)). Hence, (E3) implies that
Py (T87) = Osws i1 — v (V37 (RET) + 7857 > 03t (787)) — Osws i1 — st (V7 (737) + 735 -
Therefore,
IS (mey) = T3 (vess (), pise (FEImET)
= 57 (T5) = Oswsin = Vst (V37 (T5F) + ) Ps (D3 (M) st (V5 (TET))
> (P (7)) = Osws i1 = s, (VST (W37) + 70 ) st (056 (W30 st (Vi (5T))
= (v (mey) i (m)mey)
= IEF ()
Thus, we have shown that, if 755" > 7r§°t*, I35 (7s%) > MG (ns$) and, hence, by Theorem B(a),

SG(TeG) > B4 (m5% ). The continuity of 55 in 73%* follows directly from the continuous differentiability

SC* SC*

and the continuity of (v55%, pss) in w55 This completes the proof of

SC*)

of Hf,ct(’ytapt‘ﬂ—s,t ) in (Ve pe,
part (d).

Part (e). By part (c), it suffices to show that, 7% is continuously increasing in 3¢5 ;. The
monotonicity follows from the assumption, whereas the continuity follows directly from part (a) and
that the compound function is continuous if each individual function is continuous. This completes the
proof of part (e).

Part (f). By the proof of part (e), 755" is continuously increasing in 455 ;. By part (d), 855 is

continuously increasing in 35G_;. 0O

Proof of Theorem @: Part (a). Because 3{§_; > ~f§_1 = 0 for each ¢ and ¢, Theorem B(a) im-

plies that y7¢* > g7¢* for all ¢ and ¢. Thus,
Zg = Bl7)T A 2 BI§E) T A &igl = 2057, for all i and ¢.

Moreover, since Bfﬁ_l =0, 775 (ye) = (Sswie—1 — wir)yix — Lit(yie). Moreover, if y;, < 0, 775(ys) is

SC*

strictly increasing in y; ;. Hence, 7 = max{(d;w; -1 — Wi )Yt — Lit(Yi) : ¥ip > 0}. Thus,

e = max{(0wi—1 — wi,)Yir — Lit(Yie) + 68751 (Kii e (Blyie A &ie]) — Z Kij i (Elyj e A&ial)) o yie > 0}
Jj#i
> max{(0;w; 1 — Wie)Yie — Lit(Yie) + 08751 (Kiie( Z kijt(1)) : yie > 0}
J#i
> max{(d;w; -1 — wit)Vit — Lit(Yit) : iz > 0}
_ sscx
- 2,t
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where the first inequality follows from that s +(-) is increasing in y;; and liij,t(-) is increasing in y; ¢,
and the second from that «;¢(-) > 0 for all ¢, ¢, and z,. This proves part (a).

Part (b-i). Part (a) suggests that 7" > 739" for all £. Thus, by Theorem B(c), 75" > 755" for all
t. By Theorem B(b), v£¢* (It, Ar) = 755 > 755 = 355 (It, A¢) for all ¢ and (I3, A¢) € S. This proves part
(b-i).

Part (b-ii). Part (a) suggests that 735" > 5% for all ¢. Thus, by Theorem B(c), pi%* < ps for all
t. By Theorem B(b), pi5* (It, A¢) = p3% < P35 = P57 (I, A¢) for all ¢ and (I, Ay) € S. This proves part
(b-ii).

Part (b-iii). By Proposition B(d), z{5" (I, Ar) = Y55 pst(P5et) Vst (Vo) Nie and Z79 (I, Ay) =
UG Pt (P25 )06t (7355 ) A . Part (a) implies that ¢35 > 5. Since, by parts (b-i) and (b-ii), p35 < p5%*
and 75" > 5%, the monotonicity condition (I7) yields that Pst(Des) = psi(Pasy)s and Y ¢ (v55s) >
Vs.t(Y57). Therefore, for each (Iy, As) € S,

wii (I, M) = Y3 ps.(D35) Vs 0 (V) Nt = 0357 st (D280 Vst (Vo) Nie = T35 (I, As).-

This completes the proof of part (b-iii). O

Proof of Theorem H: Part (a). We show part (a) by backward induction. More specifically, we
show that if &s¢(z1) > as4(2) for all z, and Bgft_l > B3G—1, () 755 = me, (i) 455 > e (iil)
YT ey Ae) > 755 (I, Ay) for each i and (I, Ay) € S, (iv) p3 < pis (v) Bi5 (I, Av) < pi (I, Ay) for
each i and (It, Ay) € S, and (vi) B;"% > B34 Since s © = B:s% = 0, the initial condition is satisfied.

Since G, (21) > as,i(z) for all z,

Fsat (i) — (N = 1Ry ¢ = Ksar(yie) — (N — 1)K2 . > 0, for all y;; > 0.

Therefore,

w5 = max{(6sws—1 — We.t)Yi — Lot Wi) + 05855 1 (Fsat (Blyie A &idl) — (N — 1)id,,) : yix > 0}
> max{(6swsi—1 — wet)Yit — Lt (Wie) + 68551 (Ksap(Elyie A&in]) — (N — 1)k ;) gie > 0}
= wg‘f

Since 75 > 75", Theorem B(c) implies that 457 > 757" and p35 < piG". Thus, 'ysc*(lt, At) 5 >
Y55 = ;¢ (I, Ay) for each i and all (1, A¢) € S. Analogously, p;" (I, Ar) = P3G < psG = pi5 (Ie, Av)
for each i and all (I;,A;) € S. By Theorem B(d), 739" > 759 implies that ﬂ > B3G ThlS completes
the induction and, thus, the proof of part (a).

Part (b). By part (a), it suffices to show that, if &, ¢(2¢) > s ¢(2¢) for all 2, A%, 4 (2i¢) > K (i)
for all z;,, and B;“t_l > BsG-1, we have (i) 95 > y5¢" and (i) 279" (Ls, Ay) > 275" (L1, Ay) for each i and
(I, Ay) € S.

First, we show that g5

NSCx SC* NSC*k Sc*

If, to the contrary, 937" < y5%", Lemma 0 yields that

W35) + 0551 (Rsaa (BIESG A Ei]) = (N = 1) )]
AT) + 08351 (Reat (BIY2G A &iel) — (N = 1A% 1),

6yi,t [(6 Ws,t—1 — Ws t)ys t L
< ayi,t [(5 Ws,t—1 — Ws t)ys t L

ie.,

(Ssws,e—1 = ws,e) = Ly (935°) + 868251 Fot (325 ) Ra o (BIGET A Eird])
L

< Oswsem1 = wae) = L (U37) + 05855 1 Fot (037 ) Kl o (B[YS A &t (44)
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Since —L;4(+) is strictly concave in y; ; and §57" <y, (E4) implies that

5335%—11? (:ggct*) sa t(E[:ggCt* A Ei,t]) <4 ﬁs = 1FS t(ys it ) sa t(E[y:ct* A £i7t:|). (45)

)

However, since A, (zit) > ”ga,t( ¢) for all z;; and g5¢° < ysF, we have &g, (E[J55 A &) >
Hsa t( [ygct* A fz t]) and FS t( ) > F (yzct*) Because Bs t—1 > 5s,t—17

ds ﬁé t— 1Fs t(yé t ) Ksa, t(E[yfc;:* A fzt]) 2 5S/@§,Ct 1Fs t(yst ) Ksa, t(E[y::Ct* A &,t]),

which contradicts (EH). The inequality §55° > y5%* then follows immediately.
Now we show that 275" (I;, Ay) > i7" (It, At) for each i and (I;,A;) € S. By Proposition B(d),

Sc*(It7 At) - ygct*ps t(pss t)ws t(ryg?;ﬁ) it and xsc* (It? At) - ygct*ps t(pse t)ws,t(fygg*t)Al t- We have shown
that §7¢ > y;¢". Since (IA) holds for period t, ps¢(D3sh) = pst(Pocy): and ¥s e (9357%) = Vs, (V25%)-
Therefore, for each ¢ and (I;, A¢) € S,

T35 (T Ae) = 935 Ps.t (D56t (Vo) Mt = YST st (DL st (Vo) Nie = 75 (1, At).-

This completes the proof of part (b). O

Proof of Theorem B: We show parts (a)-(b) together by backward induction. More specifically,
we show that if 835, > B35 . () 435 2 435, () 925 = 7350, (i) 15 (1 A) = 7574 (1,A) for
each i and (I,A) € S, (iv) pi§ < pi5q, (v) pfi*([ A) < pi$ (I, A) for each i and (I,A) € S, (vi)

;¢ (L, A) > 237 (I, A) for each i and (I,A) € S, and (vii) 855 > B55_;. Since, by Proposition B(a),
B34 = B5% = 0. Thus, the initial condition is satisfied.

Since the model is stationary, by Theorem B(a), 855_; > B5G_o suggests that y3%° > 35" ;. Anal-
ogously, Theorem B(e) yields that 735" > 755" and p35 < pi5 ;. Hence, v/¢*(1,A) = 755 > 7551 =
Yiio (L, A) and pi(1,A) = pi§ < pi5ey = pi71(I, A) for each i and (I,A) € S. Because the mono-
tonicity condition (I7) holds, we have p,(pich) > pest(piy)s and Gua(Vih) > Vi 1(i5_,).
Therefore, for each ¢ and (I, A) € S,

;L A) = Y Pt (Deer ) Vst (Vas ) Ni = Ys G 1ps,t—1(Paey—1)Wst—1 (Ve y—1) N = 2571 (1, A).

Finally, 835G > 855_; follows immediately from Theorem B(f) and 35G_; > 855 5. This completes
the induction and, thus, the proof of Theorem B. [

Before presenting the proofs of the results in the PF model, we give the following lemma that is used

throughout the rest of our proofs.

LEMMA 2 Let Ay be an N x N matriz with entries defined by Ay + = 2055, and Asjr = —0;5+ where
i # j. The following statements hold:

(a) Ay is invertible. Moreover, (A;)ij >0 for all1 <i,j < N.
(b) % < Hii,t(At_l)” < 1.

N —
(c) 3 <35m0550(A7 )iy < 1.

Proof: Part (a) follows from Lemma 2(a) in Bernstein and Federgruen (2004G) and Part (b)

follows from Lemma 2(c) in Bernstein and Federgruen (20044).

47



Yang and Zhang: Dynamic Competition under Market Size Dynamics 48

Part (c). Let Z be the N x N identity matrix, B; be the N x N matrix with
0 ifi =,
0

i A

(Bt)ij =

and C; be the N x N diagonal matrix with
20 ifi=j,
0 if ¢ # 7.
Because 0;;,+ > Z#i 0;j,¢, Bt is a substochastic matrix.

Observe that, A; = C’t(If%Bt) and, hence, At_1 = (If%Bt)*lC’t_l. Let 8, = (611,¢,022,¢ -+ ,OnNt)
be the N—dimensinal vector. Thus, Z;\Ll 0;5.0(A;7 )i = (A;716,);. Moreover,

1 1 1 1
A7, = (T - §Bt)710t_19t =(Z- QBt)fl(Ct_l@t) = 5(1 - §Bt)717

(Ct)ij =

where the last equality follows from C; ', = 3Z. Therefore,

N 1 N N 0o
> 0047 = 3 AT 5By 211@( ) @
J= J= J=

where the second equality follows from the fact that 7 — %Bt is a diagonal dominant matrix. Thus, for
all i, Z;\;l 0;5.0(A;7 1) > %Zjvzl Z;; = 1. On the other hand, for all 4,

;;ﬂi (2) = 21305 (5) ot = %Z (3 )i S (3) -t

j=1 1=0 =1 1=0

—_

where the inequality follows from that B; is a sub-stochastic matrix. This completes the proof of part
(¢). O

Proof of Theorems -8 and Propositions B-B: We show Theorem [@, Proposition B, Proposi-
tion B, Proposition B, and Theorem B together by backward induction. More specifically, we show
that, if Vi7t_1(It_1,At_1|afﬁ) = wip—1li—1 + 52{_11\2',15—1 for all i, (a) Proposition B holds for pe-
riod ¢, (b) Proposition B holds for period ¢, (c¢) Proposition B holds for period ¢, (d) there exists a
Markov strategy profile {(’yf{*( 9, pf{*( ,~,~),x%*(-,-,-)) : 1 < ¢ < N}, which forms an equilibrium
in the subgame of period ¢, (e) if v;4(7;+) = iy for all ¢ and ;4, the equilibrium in the subgame
of period t, {(’yf{*(~, ), pf’:*( ,~,~),xf,{*(~,',')) : 1 < i < N}, is unique, and (f) there exists a posi-
tive vector 6pf = (51 ” 2 t, e ,ﬁ%t% such that V;’t(It,At|aff*) =w; Lt + ﬁﬁ{[\m for all . Because
Vi.o(Zo, Ao) = w; 0l;0 for all 4, the initial condition is satisfied.

First, we observe that Proposition B follows directly from the same argument as the proof of Propo-
sition M. We now show Proposition B holds in period ¢t. Because Bgmﬂﬁig(pﬁ%) = —20;: < 0,
Hﬁ{’z(-,p,i’tht) is strictly concave in p;, for any given p_;;. Hence, by Theorem 1.2 in [Fudenberg
and Tirold (T99T), ff’2 has a pure strategy Nash equilibrium pff*(’yt). Since, for each ¢ and ¢, p;, s
sufficiently low whereas p; ; is sufficiently high so that they will not affect the equilibrium behaviors of
(W} (

all firms, pP/*(7;) can be characterized by first-order conditions Op, 17 1.2 Y)|y:) = 0 for each 1,

ie.,
— 04 t(PfJ:*(%) — 0w -1 — Vi,t(%,t) + Wi{*(’}’t)) + pi,t(pff*<7t))
=—20; tpz (ve) + Z eij,tpi{*('}/t) + fit(ye) =0, for all 4.
J#i

48



Yang and Zhang: Dynamic Competition under Market Size Dynamics 49

In terms of the matrix language, we have A;p?*(v,) = fi(7:). By Lemma B(a), A, is invertible and, thus,

7*() is uniquely determined by pP’* (i) = A;" fu(1)- To show that pPf* (i) = 3=, (A; V)ij fi.e () is
contmuously increasing in +y; ., we observe that

L ()

it = (At_l),']@“ (’th)
7,

Since, by Lemma B(a), (A;');; > 0 for all i and j, we have 0, tp” “(¢) > 0 and, thus, plt (1) is
continuously increasing in +;; for each j.

Now, we compute pr* 2 ().

m-,t<p?f*<m>< Pf*w ) = Siwi -1 — v t(w t> + i)

= ((bi,t 0ii tpl t “r Zew’tpj f pl / ('Yt) Y Wit—1 — Y t(% t) + 7_‘_pf*)
J#i

= (Oisa?]" (7)) — fin ) + 6i0) P () = Sswie—1 — vig(vie) + 701"
= 9zlf(Pf{*(’Yf) — Wi -1 — Vit (Vi) + ﬂpf*) )

Hf,{*g(%)

where the third equality follows from (EH) and the last from f; ¢ () = @i 1 +6ii,e (0w t—1+vi e (Yie) — pf*).
The above computation also implies that p@t(pff*('yt)) = 014 t(p%*('yt) diw; t—1 — Vit (Vit) +7ri)t ). We
now show that H%*’z(%) > 0. Note that ny{*’z(%) =
follows from the assumption that p; ((-) > 0 for all p,. This completes the proof of Proposition B.

Next, we show Proposition B. Since pr* 2( ~t) > 0 for all ~, Hf’{’l(fyt) = Hfftc*z(%)wi,t('yt) > 0 and,

hence, log(H%'l()) is well defined. Therefore,

L [pie(P™* (v))]2 > 0, where the inequality

‘L'Lf

log (T (7)) = log(yi.e) + 21og(pV] " () — Siwie—1 — via(vie) + 7047) + log(Wie(n)).  (47)

Since

2
2

Z Yifie(ve) Z T ) i(Pre + O (S i1 + vie(yre) — gp *))], for all j,

=1 =1

by direct computation,

O log(I1 (1) _ 201 = Orie (A )ia) 01 (AT ig¥h (i) V(i) | 8 log(bia(v)) oy
07,0751 (pf{*(%) — 0w -1 — Vit (Vi) + wpf*) i 0V '

(48)
By Lemma B(a,b), 1 — 6 +(A; ') > 0 and (4;1);; > 0. Thus, the first term of (E8) is non-negative.
Because 1; ¢(-) satisfies (B),

O 1og (I () _ 92 log(vi ()

>0, for all j # 1.
07,6074, T Oy 7

and, thus, G¥ s a log-supermodular game. The feasible action set of player 4, [0,%; ], is a compact
subset of R. Therefore, by Theorem 2 in Zhou (I994), the pure strategy Nash equilibria of G} Flis a
nonempty complete sublattice of RY

We now show that if v;4(vi+) = 7i.+, the Nash equilibrium of G7 Flig unique. We first show that

Olog(T () _ - 0P log(IF] () = 0 log(IE ()
7 <0, and | 7 1> i
it it A 1t g5t

, for all ¢ and ~. (49)
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Since vi+(71,6) = Yi¢ for all I (ie., v} ,(-) =1 for all I), direct computation yields that

0% log(IP)! () 92 log (s .+(11)) 2(1 — 0.4 (A; V)is)?

2 - 2 * *
My iy (pf{ (ve) = diwie—1 — Vi (vie) + Wpf )

Inequality (8) implies that 92, , log(ti,¢(v:)) < 0 and, thus, (93“ log(H%’ (7)) < 0. Moreover,

P log(I7} (w) | 0% log(thii(n) 2L — Bii (A7 D)ii)
2 =1 2 T pf*
a%‘,t a%,t (Pz V() = dqwi g1 — Vi(vie) + )2

and

3 0% log(I?)! (1)) Z 9% 1og(vi (1)) .S 2(1 = i ¢ (A7 1)ii) 0550 (A7 15
= 07075 07407 i P21 () — Siwie—1 — vie (i) + 7017)2
Inequality (B) implies that
|82 1og(w;,t(%))| = 02 log(vt(11))
3%,,5 i 071071
Lemma B(b) implies that 1 — Hii,t(A;l)“— > 0. Moreover, Lemma B(c) suggests that 1 — (A;l)iiﬁiiyt >
Zj#(A[l)injj,t and, hence,

2(1 = fie(A ) oy 20 A )b (A
(pf{*(')/t) d; iWit—1 — Vi, t(’yz t) + Wpf*) i (pf{*(’)’t) — d;w; -1 =V t("Yz t) —|—7(pf*)

Therefore, inequality (9) holds for all ;.

Because G¥ Ilis a log-supermodular game, by Theorem 5 in Milgrom and Roberts (I990), if there

are two distinct pure strategy Nash equilibria 47 I # Y I , we must have fAyp fr > fyz{ for each i, with
the inequality being strict for some ¢. Without loss of generality, we assume that 7” DS o ft* and
f}f{ - ,.YlJ; > ?yf{* f{* for each i. Lemma [ yields that
9 log(TTPHL (AP f* dlo prl pf*
B (617 oo (11 (7)) 0

01,6 - 5’?1,t

Since 9, ,0,, , log(Hﬁ’l(%)) is Lebesgue integrable for all ¢ # 1 and 7, Newton-Leibniz formula implies
that
Lol G _ Dkel" ) _ ! Z ot o PIOBIBE (O 0" 4 57
8’717,5 6717,5 5=0 gt 7t 8’71,t87j,t

82 log (IR (1 — s)8* + s487%))

~pf* 1,t
(A1 — ds
/ Z Lk Lk 071,607,

<0,

where the first inequality follows from 47 Jz -7 Jz >4 { t =y { * for all 4, and the second from (€9), and
o Jz* — 1% #* > 0. This contradicts (60). Thus, G*"*! has a unique pure strategy Nash equilibrium "/

We now show that the unique pure strategy Nash equilibrium ~7 7* can be characterized by the
system of first-order conditions (28). First, (E9) implies that log(IT} Jt"l(~,7_iyt)) is strictly concave in
vi+ for any i and any fixed v_; ;. Hence, 77 7 must satisfy the system of first-order conditions, i.e.,
for each i, 0,,, log(prl( PI*)Y < 0 if 'ypf* 0; 0y, , log(prl( PI*Y) = 0 if vpf* € (0,%;+); and
Os log(H%’l(fyff*)) >0 if 'ypf* = 9;,+. Differentiate (A7), and we have

Or, Wit (1) 2(1 = 05 (A7 i)V 1 (in)

0y, log (12} (7)) = - :
T * Yie( ) pf{ (v) = Oiwip—1 — Vi (Vi) + Wpf*
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Thus, 777* satisfies the system of first-order conditions (2G). Since, by Proposition B(c), Iy {*’2('75 ™y >0
and 9 ;(777*) > 0, we have H%* = Hff:* 2 (VPP )i 1 (AP7*) > 0 for all i. This completes the proof of
Proposition B.

Next, we show that {(fyf{*,pf{*('yt),/\z tyf{*pl (P (v ik (1)) 1 < i < N} is an equilibrium
in the subgame of period t. By Proposition @, yf{* > 0, Ay tyf{*pz t(pt “(ve))%i () > 0 for all 4.
Therefore, regardless of the starting inventory level in period ¢, I; ;, firm ¢ could adjust its inventory
to V1" (I, Aty 1) = Nia s pie O (7)ie (). Thus, {(V21, 0207 (), Aiet s pie 05 () )i () -
1 <i < N} forms an equilibrium in the subgame of period ¢. In particular, this equilibrium is the unique
one, if v; 1 (v5.¢) = 74,¢ for all i.

Finally, we show that there exists a positive vector Bf (61 e t, e ,vaf ), such that V; (I3, At|apf*) =
wi it + 55’,{/\@7:- By (E2), we have that

Vz‘,t(It,At|Uff ) =Ji t(’Yf{*,pf{*(fo*) A; tyf{*Pz't(Pff*(fo*))U)i,t(’Yff*)aIt7At|0fﬁ)
=Ws, tlz t+ (Uzﬁl t—1Mit + pr* )Ai,t~

Since Bpt 1 >0, ﬂf’{ = 614/65’,{71;%,75 + Hﬁ{*’l > 0. This completes the induction and, thus, the proof of
Theorem [, Proposition A, Proposition B, Proposition B, and Theorem B. [

Proof of Proposition [@: By Theorems -8, and Propositions B-8, it suffices to show that, if there exists
a constant ,Bs 1 >0, such that Vi,t_l(It_l,At_ﬂUff’f) = wg ¢ 1, t 1+ Bf]; 1A+ for all 4, we have: (a)

the unique Nash equilibrium in P is symmetric, i.e. s Vit I

= y] \" for all 7, j; (b) the unique Nash equi-
hbrlum in gpf’ (v¢) is symmetric if v; ¢+ = ;¢ for all ¢ and j, (c), the unique Nash equilibrium in gff’l,
% * is symmetric, and (d) there exists a constant Bé”; > 0, such that V; ¢(Iy, At\apf*) =ws 1y —s—ﬁf"’;Ai’t

for all 4. Since V; o(I¢, Ay) = w; 0l;,0 for all 4, the initial condition is satisfied with ﬁs o =0.
pfx _  pf* m‘* pf*

First, we observe that y;3" = y;3 and m;° = w3 for all ¢ and j follow directly from the same
proof of Proposition B. Thus, we omit their proofs for brev1ty, and denote " Ir= Yy { " and 7h} Ir = =} { *

for each firm ¢ in gff 3,

Next, we show that if 7; + = ;¢ for all ¢ and j, p‘f{* (v¢) = p% (7¢). Direct computation yields that,
for the symmetric PF model, Z;V:1(At_ 1)ij is independent of 4. Thus, if the value of v;, is independent
of j,

N N
pf{* Z znyt Vt) Z )ij (@st + Osat(0sws t—1 + Vst (756) — fé*))]

j=1 j=1

(51)

Mz

(¢st+95at(6 Ws,t— 1+Vst(’}’]t _71' zja

]:1
which is independent of firm 4, which we denote as pp I (
Note that the objective functions of GF £l

Ve)-

{I201 () = Osae (001" (94) — G5t 1 — Vst (i) + T4 Vs a(7e) : 1 < i < N}

are symmetric. Thus, if there exists an asymmetric Nash equilibrium ~7 % there exists another Nash
equilibrium lff * £ 4P where lff * is a permutation of v*/*. This contradicts the uniqueness of the
Nash equilibrium in G e Thus, the unique Nash equilibrium in G I s symmetric, which we denote

as Vgt = (75{*7754*,' ,’Yfft ). Hence,

)1 )1 * )1 1
Pyt =10 (el = I (8)) = 154 > 0.
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Thus, we denote the payoff of each firm 7 in gpf Uas H’S)’J;*’l. By Theorem B(a),
BEL = 0aBL] 1y + T = 0500 s + T = 57 > 0

Thus, we denote the PF market size coefficient of each firm i as 37 JZ This completes the induction and,

thus, the proof of Proposition @. O

Proof of Theorem B: Parts (a)-(b). The proof of parts (a)-(b) follows from the same argument
as that of Theorem B(a)-(b) and is, hence, omitted.

Part (c). Because

N

p{{*(%) = Z( szJt Vt) Z )i (@56 + 055, (5wj -1 + Ve (Vi) — %*))]7

Jj=1 Jj=1

2

we have
57&’,@*7’?,{*(%) = —0;;.:(A;7 1)i; <0,

where the inequality follows from Lemma B(a). Thus, pp () is continuously decreasing in 7Tp I for
each j. Part (c) follows.

Part (d). We denote the objective function of each firm ¢ in Qg];’l as Hfftc’ ( |7rpf*) to capture

its dependence on 7r§ ];* The unique symmetric pure strategy Nash equilibrium in g;’;’; ! is denoted as

pf*( pf*) pf*

Vss,t st » where

to capture the dependence of the equilibrium on

VL) = (R () Ao (), A ().

We first show that, if 704" > 720*, AP{"(72)7) > AP1* (n2).
If, to the contrary, 75];*( ?{s*) < Wf];*( f;];*), Lemma 0 yields that ., , log(HIf,ft’ (’yﬁjz*( Sf*)|7ré’];*)) <
1 * * *
0y, , og (I (v 21 (w21) | 72)), Hee,
of 2(1 = Oaap(A; )ii)Vh (VP4 (7211))

By, log(s 1 (vEL* (7)) —
B st M P (L (FR)) = Ssws o1 — Vst(vff*( PI%)) + bl

* * 2(1 Sat( _1) ) 5 (’Ygf*< gf*))
< 0, log(s (V1 (1)) — — LT T S

PR (R (78 0)) = Sswg i1 — v (VP57 (12 57)) + Pl
Note that
2L (L5 (R25)) = Sgwsp1 — v s (VP57 (7P7)) + 7047 — [pfft*('yfﬁ( PIY) = Sqwe g1 — vey (WP (AP00)) + 7S]
N
0 S A o) G2 ) — 25 R0 (1~ S (AT ) (325 — 221°)
Jj=1 Jj=1
>0

(52)
where the inequality follows from Lemma B(c). Thus,
pzs)é*(’yfsf:( bl ))_5sws,t—1_VS,t(”Y§,J;*( ))"'Wpf* > pﬁ?(”yfﬁ( pf*))_5sws,t—1_Vs,t('Yg,{*( ))‘H"M* > 0.
Lemma B(b) implies that 1 — 04,.,(A; )i > 0. Hence,

2(1 = Osae (A7 )i Ve (54 (7247)) 2(1 = Osa,t (A7 i) Ve (54 (7247))

)

T CELREE) — 0utais — ves RS R £ AT DR (R (a2)) — Batns — vea (92 (nE)) o

52



Yang and Zhang: Dynamic Competition under Market Size Dynamics 53

Thus, we have
Do Log (s, (Y24 (REY)) < 05, , Tog (b, (V24" (7247)). (53)

By (B) and Newton-Leibniz formula,

571 . log(wl (VL)) = 05, log (i, (E4 (7E)))

s,t s, s,t s, a’ﬂ,ta’Yj,t

]ds

7

which contradicts (53). Therefore, 'yf’{*( b. JZ*) is increasing in 7Ts " The continuity of yp I (2] ) ind };*
follows directly from that II} {’1(%\775 {*) is twice continuously differentiable in (y;, 7% t *) and the implicit
function theorem.

Next we show that if (IT7) holds, 55} F(xP4*) is increasing in w5, By Theorem B(a), it suffices to show
that Hfé*’l(wf{*) = Hfﬁ*’l(yfgyt‘( pf*)|7rpf*) is increasing in 7£%,". Assume that ﬂ'pf* > ﬂ'fji*. Since we

have just shown 921" (#147) > 424 (x24"), (I2) implies that v, mg;f LR 2 a2 (a2,
If ,ypf*( pf*) _ 7pf*(wpf*)7

s,t s,t
oL (VB (REE)) =05 —vs o (VEL (REY)) ALY > o (VB () =0 sws i —vs (V0] (7B 4w

and, hence,

*,1/— * * * * * — * * *
ARG Ot (P2 (VRL3(RELT)) = Sywimr — v (VEET (RE)) + 70 ) e (V215 (7E))
pf*

> Ouad (P2 ORLT(ERET) = Ssws o — ve (V847 (W047) + 7Y ua (VL (r21)
LGl
If 205 (7217) > 4215 (7)), Lemma O implies that
Oy, Log (I (Y217 (REY)IAEET)) = 05, log (IR (0247 (w247 |7 EY7)),

ie.,

2(1 - esa,t<A;1) ) s t(’ygé*< \f{f*))
PEE (R ERE)) = Sgws et — vaa (VYT (7E47) + LY
2(1 - gsa,t(A;l) ) gt(’)’f{* (’/Tfjipf*))

PRV R () = Sewsm1 = vsa (VR (n29)) +

a’h,t 103(1/13 t(’yg{*( s,f*))

Z a’Yl,t log(djs t(’Yf{*( s,f*))
By (B) and Newton-Leibniz formula,

0y, logwl (P (REI))) — 05y, Jog (e (VP47 (247)))

/ Z 2y gy 108 (L= R () + R (),
s s, s, s, 871,t87],t
Hence,
2(1 — Osae (A7 )i V5 (V0 (REF)) 2(1 — Osae (A7 )i Vi (V0 (7257))
pf*( pf*—pf* pf*(—pf* —pfx - pf*( pf*/ _pf* pf*( _pf*
ps t (735 t(ﬂ— R )) -0 Wst—1 — Vs t(/ys t ( Tst )) + Tst Psit (’755 t(ﬂ—s,t )) - (55’11}5’,5,1 — Vs t(’ys t ( Tt
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Because, by Lemma B(b) and the convexity of vy .(-), 1 — 0sa¢(A; ")y > 0 and v/ (vf{*( Py >

57
st(’Yf];*( f?)), we have

N G C e R A O A A ) R S A G € ST R T A G A G AR B A

Therefore,
*,1/— * * * * * * — * * *
IR (FEY) = Ouan(WR (VRS (RELT) = Sswiemr — v (GERT (REA7)) + 707 ) e (AL (7E47))
> DB R R) = By = v 1) 28 2L 25
sa,t\Psit Vss,t (T sWs,t—1 Vs,t\Vst \Tst Tst w Vss,t\T

)

We have, thus, shown that 3% ]; (775);*) is increasing in 72", The continuity of B e 5’;*) in w?{* follows

directly from that of 2" *(r LfJ;*) and that Hf’]tc I(Wt‘ﬁs’t ) is continuous in (v, 7% ) This concludes the

proof of part (d).

Part (e). By part (d), we have that vff; is continuously i 1ncreas1ng in wf{ and, thus, 874 t—1- BY
part (c), we have that pj; () is continuously decreasing in 7rS " and, thus, BS t+—1- Moreover, if ()
holds, part (d) yields that ﬁp is continuously increasing in 7 t * and, thus, ﬁ _; as well. This completes

the proof of part (e). O

Proof of Theorem MO: Part (a). Part (a) follows from the same argument as the proof of The-
orem B(a) and is, hence, omitted.

Part (b). By part (a), 71'2{* > 7?2{* for each i. Hence, Theorem H(c) yields that pf{*(%) < ﬁf{* (1)
for each firm ¢ and each ~.

When the PF model is symmetric, Zjvzl 0;;+(A;1);; is independent of 4. Direct computation yields
that

pf{*('yt) p‘f{* 'Yt 29]] t t ’Lj ( f* ~§,];*) > 07 for all 3

which is independent of 4. Thus, () and Newton-Leibniz formula imply that

—_ 5)pPf* ’ S~tf* .

3pz',t

Hence, ps (077 (1)) > ps,t(ﬁff*(%)). Since yifft gjf;]; , Theorem B(b) implies that, for any (I, A;) € S
and Yt S [Oaﬁ/s,t]Na

$f{*(It,At7’Yt) yfé Ps, t(Pt (%))¢s,t(%) = yf{ Ps, t(p e (v ))1/13 t(%) = CE (ItyAta%)

This completes the proof of part (b).
Part (c). Because wpf* > 727* Theorem B(d) yields that 'ypf* > ’ypf and, hence, %t (I, Ay) =

s,t

'yf{* > 'yf];* = 75 v (I, Ay) for each ¢ and (I, A;) € S. This completes the proof of part (¢). O

Proof of Theorem MI: Part (a). We show part (a) by backward induction. More specifically,
we show that if &s¢(2¢) > s ¢(2¢) for all z; and ﬁs > 55 1, (1) 7 pf* > wf{f*, (ii) ﬁ’S)J;*('yt) < ppf (7e),
(iii) ppt (It Avyve) < PPY"(Ip, Avyye) for each i, (I, Ay) € S, and 7 € [0,75,Y, (iv) 420 > 4205, (v)
AT (I, Ag) > 7pf*(1t,At) for each i and (I, A;) € S, and (vi) Y4 > BV}, Since B2 = B2 =0, the

initial condition is satisfied.
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The same argument as the proof of Theorem B(a) implies that 777 > WS’J;*. Hence, Theorem

B(c ) implies that ﬁf{*('yt) < plt *(¢) for all i and ~;. Thus, p]?f (I, A, ye) = ﬁf{*(%) < plt () =
pzt “(It, At,ve) for each i, (I, A) € S, and v € [0,7s, t]N. Analogously, Theorem HB(d) implies that
?yff* > 7pf*. Hence, ’yf,t (I, Ay) = 3P4 > ’ypf* = ’y” *(Iy, Ay) for each i and all (I;,A;) € S. By
Theorem H(d), under inequality (2), 7% f > 71'5‘); implies that ﬁs’t > ﬁf:]; This completes the induction
and, thus, the proof of part (a).

Part (b). By part (a), it suffices to show that, if a as (ze) > as +(z) for all z;, & w t(2i6) > Kog o (2it)
for all z; ¢, and Bet 1> S]; 1, we have (i) yf{* > y *and (ii) 27 t (L, Ngyye) > xz 1 (It, A, ) for each
i, (I, Ay) € S, and v; € [Oa%,t]

The same argument as the proof of Theorem B(b) suggests that gji’];* > yf];* We now show that
Apf (I, Ay, ye) > o (It,At,%) for each i, (I, A;) € S, and v, € [0,7s.]". Because the PF model is

N
symmetrlc7 >

=1 ij,t(At_l)ij is independent of i. Direct computation yields that

P (n) — Z%, i) (EEL = 7l > 0, for all

which is independent of 7. Thus, () and Newton-Leibniz formula implies that

. o fs 0 s 1—3 Apfx + s pfx
Pt (P () = pat( / prf — 1 () ZH QL) ap(»zt) () g, < g,

Hence, ps(PP7* (7)) = pas(p?'*(74)) for all ~;. Since ypf* > yﬁft , Theorem B(b) implies that, for any
(I1; Ar) € S and 7 € [0,75,4]",

FT (I, Ay ve) = 985 0 (BT (0)) st (1) = 088 Pt (08T () )0, () = @23 (I, A, )

This completes the proof of part (b). O

Proof of Theorem T2: We show parts (a)-(b) together by backward induction. More specifi-
cally, we show that if 551& 1 ﬂs to2 (1) yfé* = y?,{;*—lv (ii) pfjtc*('Y) < p%il(’ﬂ for all v € [0,75,]",
(i) P20 (1, A7) < 2274 (I, A7) for cach i, (I,A) € S, and 7 € (0,700, (iv) 420 > 2771, (v)
vf{*(LA) > Vﬁﬁl(l, A) for each i and (I,A) € S, (vi) pf*([ Ay) > mf{*l(I,A,’y) for each i, (I,A) € S,
and v € [0,7s.]", and (vii) ,6’5) > Bét ;- Since, by Theorem B(a), 53,1 > Bff; = 0. Thus, the initial

condition is satisfied.

Since the model is stationary, by Theorem H(a), 55 b1 2> 5 _, suggests that ypf* > yfﬁ*,l. Since
7?4 is increasing in ﬁgﬁfl, 5 > Bpf o implies that 7rpf* > 7rpf* - Theorem H(c ) yields that

pfx pf* pf*

Per (7) <Py (y) forally € [0 ,’ys,t] . Theorem H(e) implies that v{4" > %t 1 Hence, pi; (1A, ) =
V() < P (0) = B2 A ) for each i, (1,A) € 8, and y € [0,7,]", and 42" (1,4) =21 >
’yf{* L= fyf{*l(l A) for each i and (I,A) € S. We now show that xf{*(l Ay) > xf’;*l(I,A,’y) for each

i, (I,A) € S, and v € [0,7]V. Because the PF model is symmetric, 37

=1 0;5.1(A71);; is independent of

i. Direct computation yields that

N
PEL () = PP () = O 05(A7 i) (wl ) = 74 1) > 0, for all 4,
j=1

which is independent of 4. Thus, () and Newton-Leibniz formula implies that

Ops (1 — )P} " (7) + spi’ (7))

ds < 0.
Op; o=

ps (T3 (7) = ps (0} () =/ pr’;*l — P ()
S
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Hence, ps(pP'* (7)) > ps(pt 1(7)) for all 7. Since ysf > yst 1> Theorem B(b) implies that, for any
(I,A) € S and 7 € [0,75,4] ",

BT ALY =y e 0T (D)) () > yEh s (07 (v s () = 2271 (1, A, ).

Finally, we show that ny ﬂs % 1. Since the model is stationary and 7rpf > 7rpf* 18 ﬂs > BS 1
follows from Theorem H(d) immediately. This completes the induction and, thus, the proof of Theorem
@ O

Proof of Theorem M3: Part (a). Because BS -1 2 BsG-1s 71'5{5* > 7w3%. The same argument as

the proof of Theorem B(a) implies that ypf* > ys.
We now show that, if 7rpf* > ek yf{* > 5% . Proposition B implies that p

s,t

PR = AT R (R,

satisfy the system of first-order equations (IH).

SC*

By Proposition B, the equilibrium sales prices, pg%,

SC* SC*

Equivalently, p5¢* = = A7 fi(yse -
We assume, to the contrary, that vpf* < 755, Lemma O implies that 8, , log(Hfo;’ (’Yg:)) <

SC* SC*

a’Yl,t log(HiCt (,YSS t7pss t)) 1€,

2(1 _osa A_l 11 V; ’Yff* *
S ( (A pi* ) ,tif*,t ) 1+ 0, Jog (e (V2]])
Zj:l(At )1j [¢sa,t + HSG,t((SSwS’t*]- + Vs,t(vs,t ) — Tst )] - 6Sw5;t*1 - stt(’)/s t ) + st
Vet (15)
<- - + 0y, 10g(¥s,t (V3571))-
S (AT )10t + Osat (Bswop—1 + Ve (V357) = W55 = Sows i1 — Vet (135) + 755 "
(54)
Inequality (B) and the Newton-Leibniz formula imply that
0% log (st (1 = $)124" +$72%))
Oy, , 1 sit(Vaet)) — Oy, 1 s, st = : ds < 0.
s 08 E)) ~ O ot = [ Z )l o Jds
By (52),
B 2(1 = Osau(Ay 1) 1) Lt(’Yf{*)
N * * * *
Zj:l( t )1J[¢sat +0sa t(5 Ws,t—1 + Vs t(V ]; ) — ngt )] — 0sWs t—1 — Vs t(’Ygé ) + 7"55&
- L 0)
e (AT )1 Bsa + Osat (St + Ve (1357) = 35)] = Sswsm1 = vt (335) + w35
Lemma B(b) suggests that 0 < 2(1 — 0,,.(A; " )11)V, Z8 t(’yﬁé*) < v (75%)- Hence,
N
Z(At_l)lj [Psa,t + Osat(dsws,e—1 + VS,t('Yf,J;*) - 7"5,{5*)] = 0sWs -1 — Vs t(vﬁ”;*) S{*
j=1
. (59
< Z(At_l)lj [¢sa,t + osa,t(dsws,t—l + Vs,t(fyssft ) - ﬂ-jct*)] - 6sws,t—1 Vs t('}/s t ) + ﬂjct*
j=1
Since 72" > mig and v (V047) < vea(3S) WY = ves (W) 2 G — vep(155). Lemma B(c)
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implies that 1 — Z;-VZI(A;I)UHSG’t > 0. Therefore,

(A;l)lj [¢sa,t + esa,t(dsws,tfl + Vs,t(’}/f,{t*) - 7‘—5/;*)] - 55105715,1 - VS,t('yg,J;*) + W?ﬁ*

] =

<.
I
—

(A7 )1050.0) (7257 = v a(HE1))

WE

(At_l)lj ((bsa,t + esa,t(ssws,t—l) - (ssws,t—l + (1 -

e

<
Il
—
<.
Il
—

(At_l)ljesa,t)(ﬂ;ct* - 1/87,5(’}/53*))

M=

(At_l)lj ((bsa,t + esa,t(ssws,t—l) - 5sws,t—1 + (1 -

<.
Il
—_
<.
Il
—

SC*

(A;l)lj [¢sa,t + esa,t(asws,tfl + Vs,t(lyj?t*) - W;,Ct*)] - 6sws,t71 - Vs,t(’yict*) + ﬂ—s,t )

v

Il
-

J

which contradicts the inequality (B5). Therefore, 'yg;’;* > 755" This completes the proof of part (a).

Part (b). We first show, by backward induction, that, if 8,, = 0 for each ¢, ﬁff; > B34 for each t.

Since ﬁffg = (5% = 0, the initial condition is satisfied. Now we prove that if ﬁfﬁ;_l > 351 and O+ = 0,

we have ﬂf{ > B35
First, we observe that if fy,; = 0, (4; ")110sa. = 3 and, thus, 2(1 — Osa,t(A7 D11) = 1. Part (a)
shows that Wﬁ* >y It 755* = Yot

,1 —
2 =00, (A7 fr(V210))i — Sswiim1 — Ve (V1) + 720 ) s 1 (49L7)

20sa,t (A7 fe(1250))i — Oswsm1 — Vs (V3F) + 735) s (V227)
_Hsc*
T syt

where the inequality follows from 7% ];* >
* 5C* H o 1 J * * :
If /24" > 7357, Lemma 0 implies that 0, , log(TI{% ! (v273)) = 9, , log(T13% (735, picy)), iee.,

2(1 - esa,t(A;l)ll)Vg,t('Yf,é*) pf*
1 pf* Df* D + a“/u IOg(ws,t (’Vss,t))
(4; ft(’Yss,t))l — OsWsp—1 — Vs,t(')’s,t )+ Tst (56)

Vé t(’Y;qct*)
- — ’ - +8 ulng@,t(’Yf?*))
(A7 fo (2 = w1 — v s (725) + w5 ™ !

Inequality (B) and the Newton-Leibniz formula imply that

S 02 log (s (1 = $)935 + 5757))
D, T0g(th s (1717)) — By, Tog (W, 0 (122%)) = / SO s o st Tt g5 < 0,
V1.t g('(/) )t(’yssﬂf)) Y1,t g(w 7t(755,t)) —0 j:1(75,t ,YS,t )[ 8’)’1,ta')/j,t ]

By (BH), we have

2(1 — Oae (A D1a) vk, (5 Vet (V5

ScC*

> — .
(A7 Fe (I = Ssws o1 — v (VL) + 720 T (AT F(0SS))1 — Ssws 1 — vst(035) + 755
Because 2(1 — fsa,¢(A; )11) = 1 and 924" > 735, 2(1 = s i (A7 )10V, (V21 > v ,(435). Therefore,
(A7 F BT = Saws o1 — vad(FP5) + 7855 > (AT (V381 — Bsws i1 — e (V35) + 735 > 0.

By inequality (I2), 424" > 735" implies that 1, (v2/) > 15,:(73%). Thus, we have

,1 — * * ;
05 =0u0 0 (A7 Fr(WPT) = dswsim1 — v (V0) + 704 ) 2 s e (F21)
050, (A7 fe (VST — Sswsi—1 — Vs (VEF) + 25 )20t (VEEH)

__TrSc*
*Hs,t .
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We have thus shown that if ﬁs to1 > Bedo1s Hg;’;*’l > 1137 By Theorem B(a) and Theorem B(a),
BEL = 0BV _pe + TN > 8,80 s pea + I = B

This completes the induction and, by part (a), the proof of part (b) for the case 05, = 0.
For any fixed 64+, both ﬁf{ and (7 are continuous in €4 ;. Thus, for each period ¢, there exists a
e: > 0, such that, if 05+ < €054.¢, ﬂf;’; > B34 It remains to show that ¢ < ﬁ This inequality follows

from the diagonal dominance condition that 65, > (N — 1)fs,,. This completes the proof of part (b).
O

Appendix B: Sufficient Conditions for the Monotonicity of w7

ks pf*] in st 1 Bst 1

pf*

5% [7} ] is increasing in 855 4 [ S,];_l]~

In this section, we give some sufficient conditions under which 7
Observe that, if t =1, 355 = Bff;_l = 0. So we only consider the case t > 2.
We define the N—player noncooperative game, G, ;, as the symmetric game with each player i’s

payoff function given by

Tit(y) = (6sws 11 — Ws )it — Lot (Yint) + 66 B(Ksat(Blyfy A ii]) Z Kbt (BlY, A Ejel)s
J#i

and feasible set given by R*. Hence, GJ7 % [g? pf 13] can be viewed as G, ; with § = BG_1 1B= BS 1. B
Propositions B and @, G, ; has a unique symmetrlc pure strategy Nash equilibrium. Thus, we use ys’t(ﬁ)
and 7rj7t(6) to denote the equilibrium strategy and payoff of each player in the game G, ; with parameter
B.
Let y:,(6;A,1) and 77 ,(B;A,1) (A > 0) be the equilibrium strategy and payoff of each firm in
Gs.1 (A, 1), where Gs 1 (A, 1) is identical to G, except that a, ¢(z;) is replaced with keq . (2i,0)— 1 (Z#l Ksbt(Zjt))

in the objective function m;4(-), i.e.,
1
it () = (Osws -1 — W t)Yit — Lt (Yire) + 058 (Kot (Blyi A i) — X(Z Kbt (Ely, A &jel))-
i
Analogously, let y7,(8; A, 2) and 77 ,(8; A, 2) (A > 0) be the equilibrium strategy and payoff of each firm
in G, (A, 2), where G, (), 2) is identical to G, ; except that with oy ¢(2;) is replaced with @ ¢(2;) + A in

the objective function m; .(-), i.e.,
it (Ye) = (6sws—1 — We t)Yirt — Lot (it) + 0sB(Ksar (Bly;y A &) Z rostt (Bly; s A&jel) +A).
J#i

Finally, let y3,(8;A,3) and 7 ,(B;A,3) (A > 0) be the equilibrium strategy and payoff of each firm
in Gs+(A,3), where Gs (A, 3) is identical to Gs: except that a;(z:) is replaced with Aas¢(2¢) in the

objective function 7, .(-), i.e.,

Tit(Yt) = (OsWs.t—1 — Ws t)Yit — Lot (Yit) + Is BN (Ksa i (E] yl ¢ N &it]) Z Fos,t( yj,t AN&jil))-
J#

In some of our analysis below, we assume that c .(-) satisfies the monotonicity condition similar to
(),

3045 t Zt
Z Pors . (57)
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i.e., a uniform increase in the current expected fill rates gives rise to a higher expected market size of
each firm in the next period.

First, we give a lower bound for the value of 355 _; and Bff;_l. By Theorem B(a) and Theorem B(a),

si—1 Zésvt , and 5St 1_B i |+ Where

Bour = 51H shis.r)

with I ;= min{Hicf7pr* '} > 0. Thus, we assume in this section that 8 > B,, >0

Let the density of & be defined as gs:(-) = Fg,(-) and its failure rate defined as r,4(-) :=
s,t(-)/Fs(-). We have the following lemma on the Lipschitz continuity of yZ,(8) and y,(8;\,14)
(i=1,2,3).

LEMMA 3 If Kgq4(-) is twice continuously differentiable and the failure rate of & ¢ is bounded from
below by r, ; > 0 on its support, there exists a constant K ; > 0, independent of A, i, and 3, such that
192,0(8) = 3, (B)] < Karl B — Bl and Jy2,(B; A1) =42 (B: X, 1) < Kool = Bl forall A > 0,0 = 1,2,3, and
B,8>0.

Proof: Since fq,¢(-) is twice continuously differentiable, by the implicit function theorem, y ,(53)

and y; ,(B; A, i) (i = 1,2,3) are continuously differentiable in 3 with the derivatives given by:

ay:,t(ﬂ) _ 8y:,t(5;>\a 1) _ ay:,t(ﬂ;)‘az)
o aB B B
_ 55 Fy t(y:t(ﬁ)) Ksa, t(E[ys +(B) Aﬁfs,t})
L”(y:)t(ﬁ)) + 556‘]5,25(3/:,15(6)) sa, t(]E[ys +(B) A fs,t]) - 5s5F3,t(y;t(ﬁ)) sa, t(]E[ys +(B) A fs,t])’

and

op
— A Fs (y:t(ﬁ)) Ksa, +(E [ys7t(ﬁ) N&sit])
L”(y;t(ﬂ)) + )‘555‘15,t(y:,t(5))’€/sa (]E[y: +(B) A &s, t]) — Aésﬁﬁﬁt(y:,t(ﬂ))ﬂls/a,t(E[y;t(ﬂ) A Es,t]).

Observe that

6. F, (a1 (B)) kgt (ElYs 1 (B) A s i])
L" (Y% 1(B)) + 658s,t (Y% 1 (B))Klaa s (BIYE L (B) A &st]) — 6:BF2, (it 1(B)) ke 1 (Bly 1(B) A Lsre])
dst,t(yz;t(ﬁ))fe;atGE[y:ft(ﬁ) ) 1 1
T 05Bs,t(y5,.(B))Ksa t(E[ys +(B) N Esel) — és’t_lr&t(y:,t(ﬁ)) B ﬂ&t_lfs,t’

where the first inequality follows from the convexity of L, .(-) and the concavity of ks ¢(-), the second

from 7, ,(-) > 0, and the last from 7 :(-) > r,,. Analogously, we have

Ads Fi 1 (y5,4(8)) Kla e BlyS 1 (B) A Est])
L"(y%1(B)) + MsBas,e (5% 1(B))sa, e (Blyz 1 (B) A €sal) — A0 BEZ (52 1(8)) o (Blyz 1 (B) A €sal)
Ads Fi 1 (3,4 (8)) Kla e (Blys (B )Afs i) < 1 <

1
T A0 Bt (Y5 4 (8))Ksa (Elys ¢ (8) A &s i) ﬁg7t_17"s,t(y:,t(ﬂ)) B ﬁ&t_lfs,t .

By the mean value theorem,

ys t(ﬂ)

| <K

[2.4(8) —y2.(8) = 15 — Bl
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where B is a real number that lies between 3 and 57 and K ; = 5 L -

—s,t—175,

. The inequality |y ,(5; 1) —
; :
yi (BN 4)| < K43 —f| for all A > 0 and i = 1,2,3 follows from exactly the same argument. [J
We remark that the assumption that the failure rate r; () is uniformly bounded away from 0 is not
a restrictive assumption, and can be satisfied by, e.g., all the distributions that satisfy (i) the increasing
failure rate property, and (ii) the density ¢ +(-) being positive on the lower bound of its support. The same
argument as the proof of Theorem B(a) and Theorem B(a) imply that, for all 3 > 3, y:t(ﬁ) > yi.(B)
and y;‘)t(ﬁA;)\J) > yi (B A i) (1 = 1,2,3). We now characterize sufficient conditions for 77 ,(3) and
75 1(B; A1) (i = 1,2,3) to be increasing in f3.
LEMMA 4 The following statements hold:
(a) If Kspe(-) = kY, for some constant kY, ,, 7% ,(B) is increasing in 3.
(b) Assume that a, () > 0 for all z; and that the conditions of Lemma B hold, we have:
(i) If Kep(-) is Lipschitz continuous, there exists an M., < +oc, such that for all X > M,
75 +(B; A, 1) is increasing in 3.
(ii) If the monotonicity condition (67) holds, there exists an MZ, < oo, such that for all
A > M2, wt,(8;A,2) is increasing in f3.
(iii) If the monotonicity condition (B2) holds, there exists an M3, < +oo, such that for all
A> ngt, 75 +(B; A, 3) is increasing in 3.

Proof: Part (a). Observe that, 5351%‘3@,1:(15[3}{; A& 4]) is increasing in § for any y; ;. Therefore,

75 (B) = max{(0sws -1 — e )it — Lo t(it) + 0sBrsai(Elyy Ais]) = (N = 1)k, < yie > 0}

is increasing in 5. This completes the proof of part (a).
Part (b-i). Let 8 > 8, and k; < +oo be the Lipschitz constant for re4(-). Since ag(v) is a
continuous function on a compact support, as¢(-) > 0 for all z; implies that a;+(-) > a,, > 0 for some

constant a ;. We define

Cit(Yit) == (OsWs,t—1 — Ws.t)Yi.t — Lo t(Yit) + 0sBhsat(Elyi e A&it]).

By the envelope theorem,
Gt (ys,+(Bs A, 1))
op
where the first inequality follows from ks, (i) > @s¢(2:) > @, By the mean value theorem and

B> B,

- 6s’€sa,t(]E[y:,t(6; >\7 1) A gi,t]) Z 6sgs,t > 07

it (Bs A1) = Gie (W2, (Bi A 1)) > bsa , (B — B). (58)

At the same time, since a; - (-), ps,-(-), and 15 -(+) are all uniformly bounded from above for 7 <t —1,

s¢_, and 6575_1 have a uniform upper bound, which we denote as Bs7t_1 < 4+00. On the other hand,

5
%(N — 1) [Brsp (B[l (B M 1) A s t]) — Broswt (E[y2 o (B X, 1) A & a])]
=5V = )8 (Bl (0 1) A €)= Breana Iy (5 01) A €]
+ Brispt B[yl (B M 1) A Est]) — Brispt (B[l (852, 1) A &st))] (59)
S%(N — ) [Bat—1ke (W1 (B A1) — Y24 (B; A, 1) + (B — B)sp.]
S%(N ~ 1) (Bsp-1kiK s+ Rsp) (B — B),
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where the first inequality follows from the Lipschitz continuity of kg +(-), y;"t(ﬁ; A1) > 5 4(B54,1), and

E[y: (850, 1) A &atl = B[y (Bs 0 1) A &ar] < w2(Bs A1) — 424 (B X, 1), with Ry = max{rg(z) :
zit € 0,1]} < 400, and the second from Lemma B. Define
(N — 1)<Bs,t71kth,t + Rsbt)

M}, = < +oo.
’ gs,t

S

If A > ML,

T (BN D) = (BN 1) = Galwha(Bs A1) = Gori o (B; A 1))

D G (0 (B30, 1) = B0, (B0 1)

A
(6sgs,t - %(N - 1)(Bs,t—1kth,t + Rsb,t))(é - B)

> (5:9@57,5 - 63@3,0(5 - 5)
— 0,

Y

where the first inequality follows from (B8) and (89), and the second from A > M. ,. This establishes
part (b-i).
Part (b-ii). Let Hy (i) := (0sws,i—1 — Ws,t)Yit — Lt (yi). Since

!
5sws,t—1 — Ws,t — hs,t S H37t(yi,t) S bs,t + 6sws,t—1 — Ws,t,

H, () is Lipschitz continuous with the Lipschitz constant equal to l; := max{|0sws —1—ws ¢ —hst|, |bs,t+

5sws7t—1 - ws,t|} < +00. ThU.S,

Hs,t(y:,t(ﬂ; A 2)) — Hs,t(y:,t(B; A2)) < lt(ﬂ:,t(ﬁ; A 2) — yé‘,t(ﬂ; A 2)) < lth,t(B - B), (60)

where the second inequality follows from Lemma B and y;"t(B; A,2) > 95 (85 A,2). On the other hand,

8sB(sa e (Bly% (B A, 2) A &aal) — (N = D 1 (Blys o (B; A, 2) A &sa]) + A)
— 05 B(Rsat (BlyZ (B A 2) As]) = (N = D (BlyZ (85 A, 2) A s]) + A)
>63B8(Fsa e (BlYS 4 (8; A 2) Adstl) = (N = Dkap e (ElyS (83 A, 2) As]) +A)
— 05 B(sa (Blyl (B A 2) A &sal) = (N = Dk 1 (Elys (B A, 2) A s]) +3)
>6.M(B — B) + b, (B — B)
=0.(A+a,,)(B - B),

where the first inequality follows from (52) and the second from the definition of ;. Define

LK

2 . tir st

Se= T g < oo,
s

If A > M?

s,t)

ma(Bi A 2) — 7, (B5 A, 2) 8sB(ksat(BlYZ (B A, 2) A ar]) = (N — Db (BlyZ (B A, 2) Aa]) +A)
—65B(Fsat (BIYS(B; A 2) Asa]) = (N = Drap e (BlyS o (8; A, 2) Asi]) +A)
—(Heot(y54(B: A, 2)) = Hoa(y3,4(B A, 2)))

(BsA+ Gsay, — 1Ko 1) (B = B)

(11K y — Gsryy + 050y — LK, 1) (B — )

0,

AVARNAYS
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where the first inequality follows from (60) and (BI), and the second from A > M2,. This establishes
part (b-ii).

Part (b-iii). As shown in part (b-ii), Hs.(-) is a Lipschitz function with the Lipschitz constant I;.
Thus,

Hio(y:4(8: 0 3)) = Hoe (524 (5: X, 3)) < L2, (B: X 3) — 2, (B: 0 3) S UKsu(B—-5),  (62)
where the second inequality follows from Lemma B and yjt(ﬁ, A,3) > yi(B;A,3). The monotonicity
condition (A1) and y;‘,t(B; A,3) > i (85 A, 3) implies that

Koat (BlyZ o (B; A 3) A oa]) = (N = Dman s (B[y2 o (8 A, 3) A &)
2 Fsat(E[yg (850, 3) Ast]) = (N = D)rsy,e (E[ys (B3 A, 3) A s i)

)

Therefore,

85 BA(Rsat (BLYZ o (B A 3) A &) = (N = Dkanr (BIys , (B; A, 3) A s i)

= 05BN Ksat (Elys (85X, 3) ANst]) = (N = Dksp e (E[ys (85 A, 3) Aésiel))
> 63 BA(Rsa,t (B[YS, (B; X 3) A st]) = (N = Dkan 1 (BlyZ (85 X, 3) A s i)

— 05BN (Rt (BlYS 1 (B3 A 3) A &) = (N = D (Blys o (B; A 3) A i)
> A(Ksa,t (IS (B A, 8) A &sa]) — (N = Dk o (Blyz (8 A 3) A i) (B — B)
>6.ha, (B = B),

where the last inequality follows from the definition of a ;. Define

(63)

. K
M3, = =~ < 400
v 6Sgs,t

If A > M3,

S

T (BN, 3) — 75, (B; A, 3)

85 BA(Ksa,t (BlyS o (B; A, 3) A &]) = (N = D (BlYz o (B; A 3) A i)
—63BN(Ksa,t (Y2, (B; A, 3) A &sa]) = (N = Va1 (BlyZ 1 (B; A, 3) A &sl))
—(Hot(y4(B: A, 3)) — Hat(454(B; A, 3)))

(Barary s — 1 4)(B = B)

> (ItKse —1:Ko1) (B — B)

= 0,

v

where the first inequality follows from (62) and (B3), and the second from A > M3,. This establishes
part (b-iii). O
Lemma B has several economical interpretations. Parts (a) and (b-i) imply that, if the adverse effect

pf*

of a firm’s competitors’ service level upon its future market size is not strong, w55 [7{7

| is increasing in
Si-1 [ﬂfﬁq]' Part (b-ii) implies that if the network effect is sufficiently strong, 75% [775{*] is increasing

in 3391 [ﬁf’];l]. Finally, part (b-iii) implies that if the both the service effect and the network effect

are sufficiently strong, m3%* [wﬁ”;*] is increasing in 55 _4 (8% 1.
;
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